

A short course on Inferential social network analysis

Benjamin Rosche and Wicia Fang

Get the materials: http://benrosche.com/teaching/isna-workshop/

Content

- 1. Introduction: Social networks and regression modeling
- 2. Network regression models
- 3. R workshop
- 4. Conclusions

1 Social networks and regression modeling

- Two types of inferential social network analysis (SNA):
 - 1. Models of networks network measures as dependent variables
 - 2. Models of network effects network measures as explanatory variables today
- In social and political systems, interactions between actors are an integral part of the process of interest.
- SNA extends of the conventional regression model by:
 - 1. Accounting for *interdependence of observations*
 - 2. Pose and test new questions and theories
- Example: Do students' SES predict their academic achievement?
 - $GPA_i = \beta_0 + \beta_1 SES_i + e_i$

Three ways in which network embeddedness can affect individual outcomes (An, Beauville, Rosche 2022)

• Peer effects: $GPA_i = \beta GPA_j$ today

Three ways in which network embeddedness can affect individual outcomes (An, Beauville, Rosche 2022)

- Peer effects: $GPA_i = \beta GPA_j$ today
- Positional effects: $GPA_i = \beta Centrality_i$

Three ways in which network embeddedness can affect individual outcomes (An, Beauville, Rosche 2022)

- Peer effects: $GPA_i = \beta GPA_j$ today
- Positional effects: $GPA_i = \beta Centrality_i$
- Structural effects: $GPA_i = \beta Polarization_{N(i)}$

Three types of peer effects

• Endogenous peer effect (global impact): $GPA_i = \beta GPA_i$ today

- Three types of peer effects
- Endogenous peer effect (global impact): $GPA_i = \beta GPA_i$

• Exogenous peer effect (local impact): $GPA_i = \beta SES_i$ today

- Three types of peer effects
- Endogenous peer effect (global impact): $GPA_i = \beta GPA_j$ today
- Exogenous peer effect (local impact): $GPA_i = \beta SES_i$
- Disturbance peer effect: $u_i = \beta u_j + \varepsilon_i$

- Different peer groups
- best-friend effect: $GPA_i = \beta GPA_j$
- peer group effect: $GPA_i = \beta \overline{GPA}_{-i}$

• peer network effect: $GPA_i = \beta w_{ij}^* GPA_j$ today

adjacency matrix

 $\boldsymbol{w} = \begin{bmatrix} 0 \ 0 \ 0 \ 1 \ 0 \\ 1 \ 1 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 1 \\ 0 \ 1 \ 0 \ 0 \ 0 \end{bmatrix}.$

5/14

where $w_{ij}^* = w_{ij} / \sum w_{ij}$

2 Network regression models

Network regression models can be differentiated by

- whether or not they consider that the network might have formed endogenously
- whether they are cross-sectional or panel

Today: focus on models that assume w to be exogenous

- Linear-in-means model (peer group effect)
- Spatial autoregressive models (peer network effect) today

2 Varieties of spatial regression models

- Spatial autoregressive model: $y = \rho W y + X \beta + \epsilon$
- Spatial lagged-X model: $y = X\beta + WX\theta + \varepsilon$
- Spatial error model: $y = X\beta + \lambda Wu + \varepsilon$
- Spatial Durbin model: $y = \rho W y + W X \theta + X \beta + \epsilon$
- Spatial autoregressive combined model: $y = \rho W y + X \beta + \lambda W u + \epsilon$
- Spatial Durbin error model: $y = X\beta + WX\theta + \lambda Wu + \varepsilon$
- General spatial model*: $y = \rho W y + W X \theta + X \beta + \lambda W u + \varepsilon$
- * = weakly identifiable

Spatial lagged-X model

Cross-sectional model

 $y = X\beta + WX\theta + \varepsilon$

 θ = exogenous peer effects

Panel model

 $y_t = X_t \beta + W X_t \theta + \mu + \xi_t + \varepsilon_t$

 μ = individual-specific effects, ξ_t = time-specific effect

Dynamic panel model

 $y_t = X_t \beta + W_t X_t \theta + W_{t-1} X_{t-1} \eta + \mu + \xi_t + \varepsilon_t$

 $\eta =$ lagged exogenous peer effects

Spatial autoregressive model

Cross-sectional model

 $y = \rho W y + X \beta + \varepsilon$

 ρ = endogenous peer effects

Panel model

$$y_t = \rho W_t y_t + X_t \beta + \mu + \xi_t + \varepsilon_t$$

 μ = space-specific effects, ξ_t = time-specific effect

Dynamic panel model

$$y_t = \rho W_t y_t + \tau W_{t-1} y_{t-1} + X_t \beta + \mu + \xi_t + \varepsilon_t$$

 τ = lagged exogenous peer effects

R workshop

http://benrosche.com/teaching/isna-workshop/R-tutorial.html

10/14

Conclusion: When are individual effects biased?

- The effect of individual features (β) will not be biased in the presence of peer effects if networks are random
- Endogenous network formation does not bias β in the presence of an endogenous peer effect (but: total effect is underestimated)
- However, β will be biased if the individual feature is part of the selection process and also influences peers (exogenous peer effect)
 e.g., the role of socioeconomic status on student achievement
- These results hold for cross-sectional and panel data using a RE estimator. The FE estimator cannot estimate time-constant individual effects

* Note that these results hold for randomly distributed features. Individual features that are themselves affected by peer effects (i.e., $X = WX\theta$) will be affected more by endogenous network formation.

Conclusion: When are peer effects biased?

Cross-sectional data

- If networks are random, exogenous peer effects are estimated correctly even if there are omitted variables
- If networks are random, the endogenous peer effect is biased if there are omitted variables
- Both exogenous and endogenous peer effects are biased if networks formed endogenously

Conclusion: When are peer effects biased?

Panel data

- If networks evolve over time, we can estimate time-constant exogenous peer effects using a FE estimator
- If networks are random, the FE model recovers the correct exogenous peer effects even if other exogenous peer effects are omitted
- The FE model also recovers correct exogenous peer effects in the presence of time-constant selection effects if all relevant exogenous peer effects are included in the model
- The FE model recovers the correct endogenous peer effect as long as the selection process is time-constant (!)

Thank you for your attention!

Helpful reviews

Hsieh, Lin, Patacchini (2020), Bramoulle, Djebbari, Fortin (2020), Ruttenauer (2022), An, Beauville, Rosche (2022)

Advanced parametric models that account for the endogeneity of w

SAOM (Snijders 2011), Han, Hsieh, Ko (2021), Heckman-style two-stage approaches (Goldsmith-Pinkham & Imbens2013, Arduini et al. 2015, Hsieh & Lee 2016)