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Cornell University 2024 

Explaining how macro-level outcomes emerge from their constituting parts at the micro-level is a complex 

undertaking. In empirical research, however, statistical methods that feature trivial aggregation functions 

dominate because methods to study more complex aggregation processes remain underdeveloped. In this 

thesis, I contribute to the development of empirical-statistical methods for the study of micro-macro links.  

In Chapter 1, I develop a method to analyze the distributional consequences of heterogeneous treatment 

effects in a population that can be separated into subgroups. The developed approach is based on the 

descriptive variance decomposition (Western and Bloome 2009). I extend this approach to an explanatory 

framework by modeling a treatment effect on the mean and variance of each group and then determining 

how these treatment effects affect the variance within groups, between groups, and overall. I demonstrate 

the utility of the approach by analyzing the changing effect of motherhood on women’s earnings and its 

consequences for women’s earnings inequality between 1980 and 2020. The decomposition of this effect 

reveals that motherhood increases inequality between economic strata but reduces inequality within them. 

As the within-group effect is larger than the between-group effect, the results show that the changes in the 

motherhood effect since 1980 have overall reduced earnings inequality among women. This fact is obscured 

when only mean differences are examined.  

In Chapter 2, I develop a Bayesian multilevel model that conceptually reverses the conventional 

multilevel model setup to model the effect of lower-lever units on an outcome at a higher level. The model 

allows researchers to derive aggregation functions empirically if the specific functional form is unknown. 

I accomplish this by including a weighted sum in the linear predictor so that the aggregation weights of 

lower-level units in their effect on an outcome at a higher level can be modeled as a function of observed 

explanatory variables. I demonstrate the model’s utility with an empirical application to the survival of 

coalition governments as predicted by parties’ financial dependency on their members. The results show 



 

 

 

that the more parties’ financial resources comprise contributions from their members, the higher the 

termination hazard of governments including those parties. Analyzing the aggregation function, I find that 

parties’ weight in the effect depends on their relative seat share in parliament. Therefore, when aggregating 

the effect of parties’ financial dependency on government survival, parties should be weighted by their 

relative seat share rather than evenly averaged.  

In Chapter 3, I use exponential random graph modeling and empirically calibrated simulation to 

examine the determinants of network structure characteristics, such as network cohesion, centralization, 

clustering, and composition. The idea is to generate synthetic networks from empirically calibrated 

exponential random graph models in which the modeled tie-formation mechanisms are sequentially 

activated to determine how they shape structural characteristics at the network level. I employ this approach 

to examine the degree, pattern, and determinants of socioeconomic segregation and its relationship to racial 

segregation in friendship networks in high school. The results show that friendship networks are overall 

less socioeconomically segregated than they are racially segregated. However, the exclusion of low-SES 

students from high-SES cliques is pronounced and, unlike racial segregation, unilateral rather than mutual: 

many friendship ties from low-SES students to high-SES peers are unreciprocated. The decomposition of 

determinants indicates that about half of the socioeconomic segregation in friendship networks can be 

attributed to differences in socioeconomic composition between schools. The other half is attributable to 

students’ friendship choices within schools and driven by stratified courses (about 13 percent) as well as 

racial and socioeconomic preferences (about 37 percent). In contrast, relational mechanisms like triadic 

closure – long assumed to amplify network segregation – have only minor effects on socioeconomic 

segregation. These results highlight that SES-integrated friendship networks in educational settings are 

difficult to achieve without also addressing racial segregation. 
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INTRODUCTION 

The explanation of social phenomena through the heterogeneous and interdependent actions of individuals 

is a core aim of the social sciences. It is what differentiates the social sciences from psychology, in which 

the explanation of individual behavior is an end in itself. Explaining social phenomena as the aggregate 

consequences of determinants at the micro level can be a complex undertaking because individuals have 

different opportunities and restrictions, they follow different logics, and they depend on each other in their 

actions. Statistical regularities in collective behavior are therefore often unintended by the involved 

individuals and difficult to explain from their individual properties alone.  

Analytical-theoretical research has dedicated much attention to formalizing the link between micro- 

and macro-level. The explanatory framework was coined “methodological individualism” (Schumpeter 

1908; Weber 1922), codified in the well-known “macro-micro-macro” scheme (Coleman 1986), and 

developed into the field of analytical sociology (Hedström and Bearman 2009). Computational (e.g., agent-

based simulation) and mathematical modeling (e.g., game theory) have emerged as key methodological 

approaches. These methods allow researchers to model complex aggregation processes to demonstrate how 

macro-level outcomes emerge from their constituting parts (i.e., show generative sufficiency). However, 

due to their tenuous link to empirical data, it is inherently difficult with analytical-theoretical methods to 

establish whether modeled explanations are relevant, valid, and generalizable to specific empirical settings. 

In empirical research, in contrast, statistical methods that feature trivial aggregation functions dominate 

and researchers often ignore the aggregation problem (i.e., default to the function implied by their chosen 

method). For instance, the aggregation function of the workhorse of empirical research, the linear regression 

model, is a linear equation for the conditional mean. However, many interesting social phenomena are 

difficult to describe through conditional means, especially those that capture two facts about social life: 

individual variation and mutual interdependence. Although individual variation can be examined with 

conditional means, other aggregation functions, such as the variance, are usually more effective for 

understanding population heterogeneity. Similarly, mutual interdependence is difficult to examine with the 
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linear regression model because it assumes the conditional independence of observations. Overall, 

empirical-statistical methods for the study of complex aggregation processes are woefully undeveloped.  

In this thesis, I contribute to the development of empirical-statistical methods for the study of micro-

macro links. In Chapters 1 and 2, I develop methods to model the macro-level consequences of individual 

variation. In Chapter 3, I develop an approach to model the macro-level consequences of mutual 

interdependence. 

Micro-macro models to examine individual variation 

Describing and explaining individual variation is at the core of the social sciences as population science, 

which perceives population heterogeneity not as a nuisance but as an outcome of interest (Xie 2013). The 

description of individual variation with statistical methods is relatively straightforward because all 

necessary quantities can be observed. For example, we can compute the variance across observations to 

describe heterogeneity in a population. In contrast, explaining individual variation and its macro-level 

consequences is more challenging with statistical methods because causal effects can be defined but not 

observed at the individual level. The effect of a treatment xi on an outcome yi for an individual i is defined 

as the difference in potential outcomes associated with the different treatment states: δi = yi(xi = 1) −

yi(xi = 0). The fundamental problem of causal inference is that, for any given i, we only observe either 

yi(xi = 0) or yi(xi = 1). In other words, the individual causal effect δi cannot be observed. We can, 

however, observe the average treatment effect (ATE) by invoking two assumptions: no systematic pre-

treatment heterogeneity and no systematic treatment effect heterogeneity between those who receive the 

treatment and those who do not. In this case, ATE = E[yi(xi = 1)] − E[yi(xi = 0)]. Therefore, we must 

aggregate (average over) individual-level variation in the target population to identify the causal effect.  

This creates an interesting fault line for empirical research aiming to explain social phenomena through 

their constituting parts. Researchers must average over individual variation to identify causal effects. High 

levels of aggregation, however, leave them with less variation to model the aggregation process. In contrast, 

low levels of aggregation leave more variation to model but also require more granular data to identify 
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causal effects. Therefore, how much the black box can be opened depends on the available data and on the 

capacities of researchers and methods to model the aggregation process. This is the fault line I navigate in 

the first chapter of this dissertation. 

Chapter 1: Treatment effects on within-group and between-group inequality. An explanatory decomposition 

approach. 

In Chapter 1, I contribute to the study of inequality by developing a method to analyze the distributional 

consequences of heterogeneous treatment effects in a population that can be separated into subgroups. I 

thus open the black box up to the group level by differentiating a target population into 𝑗 = 1,… , 𝐽 

exhaustive and mutually exclusive groups.  

The developed approach extends the descriptive variance decomposition—which is based on the 

analysis of variance (ANOVA) theorem—to an explanatory framework (Bloome and Schrage 2019; 

Western and Bloome 2009). The ANOVA theorem states that the variance V of an outcome y in a population 

of individuals i that can be differentiated into groups j can be decomposed into within- and between-group 

components: V(yi) = ∑ πjσj
2

j⏟    
within-group variance

+∑ πj(μj − ∑ πjμjj )
2

j⏟            
between-group variance

, where μj and σj
2 are group-specific means 

and variances and πj is the proportion of individuals in group j. The theorem links the individual 

observations, yi, to an aggregate outcome, the variance in y within and between groups, to reveal underlying 

patterns of inequality in this population. 

I modify the ANOVA theorem to accommodate group-specific treatment effects on within-group, 

between-group, and total variance. Specifically, using grouped heteroscedasticity regression (Harvey 1976), 

I model a treatment effect on the mean and variance of each group and then determine how these treatment 

effects affect the variance within groups, between groups, and overall. This approach, therefore, averages 

over individual-level variation up to the group level to identify treatment effects and then determines 

mathematically how these group-specific treatment effects impact the population-level variance.  

I develop this method both for cross-sectional and longitudinal analyses. With longitudinal analyses, 

researchers can disentangle compositional changes (i.e., changes in pre-treatment inequality and in the 
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distribution of treatment across groups) from behavioral changes (changes in treatment effects). Both 

changes relative to a timepoint (e.g., 1980) and changes relative to a counterfactual scenario (e.g., a 

counterfactual distribution of treatment) can be analyzed. With the paper, I provide the R package “ineqx” 

that implements both descriptive (Western and Bloome 2009) and explanatory variance decomposition. The 

paper thus adds to the toolkit of methods to study inequality determinants developed in sociology. While 

the method is still in an early stage of development, I hope that the paper will inspire subsequent research 

that will refine and strengthen it. 

I apply this approach to examine the how the effect of motherhood on women’s earnings inequality has  

evolved from 1980 to 2020. I differentiate women by total household income into low-, medium-, and high-

SES and demonstrate that motherhood has increased inequality between socioeconomic strata but reduced 

inequality within them. As the within-group effect is larger than the between-group effect, changes in the 

motherhood effect between 1980 and 2020 have overall reduced earnings inequality among women. This 

fact is obscured when only mean differences are examined. This result highlights the risk of drawing 

misleading conclusions when researchers choose aggregation functions that do not properly capture the 

macro-level consequences of examined micro-level processes. 

Chapter 2: “A multilevel model for coalition governments: Uncovering dependencies within and between 

governments due to parties.” 

In the first chapter, the micro-macro link is defined by the “analysis of variance” theorem and thus fixed. 

In the second chapter, I develop a model that allows researchers to derive aggregation functions from data. 

The developed Bayesian multilevel model conceptually reverses the conventional multilevel model setup 

by modeling the effect of lower-lever units on an outcome at a higher level. Building on Goldstein (2011) 

and Snijders (2016), I accomplish this by including a weighted sum in the linear predictor so that the 

aggregation weights of lower-level units in their effect on an outcome at a higher level can be modeled as 

a function of observed explanatory variables. 

I apply this model to a multilevel structure that emerges in countries with parliamentary democracies 

in which coalition governments are the norm. To explain coalition outcomes like their formation or 
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termination, political scientists leverage both party- and government-level explanations. Party-level 

explanations require the aggregation of party features across all parties that make up a government. In the 

simplest case, E[yi] = β (
1

ni
∑ xkk ), where yi is an outcome of a coalition i of size ni, β is the effect of an 

aggregated party feature on that outcome, and xk is the party feature that is averaged across all parties k 

that make up that coalition. However, there are reasons to believe that the features of some parties matter 

more than others. For instance, Laver and Shepsle (1998) theorize that party leaders in hierarchically 

structured parties have more leverage to administer a coalition than party leaders in democratically 

structured parties as their party base can constrain leaders’ room for negotiation (Laver and Shepsle 1998). 

This idea can be represented by giving parties differential weights: E[yi] = β(∑ wkxkk ). To empirically 

test this idea, however, we must estimate the party weights, which is what I propose to do. 

Let yi
G be a government-level outcome that is determined by a systematic component (β

gxi
g
) and a 

random component (ug) at the government level, a systematic component (β
pxik
p

) and a random component 

(uik
p

) at the party level, and let the effect of each party k in the set of parties p(i) that constitute government 

i be aggregated by a weighted sum: 

yi
g
= β

gxi
g
+ ui

g
+ ∑ wik(β

pxik
p
+ uik

p
)k∈p(k)   

with wik =
1

ni
exp(−{βwxij

w})
  subject to ∑ wikik = 1 

To estimate the party weights, I propose to model them as a nonlinear regression of unobserved wij on 

observed explanatory variables xij
w instead of assigning fixed weights to each party. The proposed weight 

function reduces to the arithmetic average (i.e., wij =
1

ni
) if the explanatory variables do not impact the 

weights. If β
w ≶ 0, the weights differ between parties, ranging between 0 and 1, and constraining the sum 

of weights within governments to 1. The weight regression can be seen as a measurement model as β
w

 

measures the relative weight of each party in the aggregated party effect. The aggregated party effect, in 

contrast, is part of the structural model as β
p
 estimates the impact of parties and party features on the 

coalition outcome. 
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This model makes two contributions. First, the model demonstrates how aggregation functions can be 

empirically derived if the specific functional forms are unknown a priori. This approach has broader 

application than just in political science. Aggregation functions and crisscrossing data structures are 

ubiquitous in empirical social research. In network and spatial analysis, weight matrices define the relative 

weight of neighbors in their effect on nodes or spatial units. The proposed model allows researchers to 

estimate these weights rather than specify fixed values. This weight regression can include complex 

aggregation functions (e.g., min, max, mean, or sum) as the model is estimated with Bayesian MCMC, 

which does not require analytically tractable likelihood functions. Another example is index building, which 

often involves the aggregation of information across levels using aggregation functions specified by 

researchers. The proposed model allows researchers to test the hypothesized aggregation functions against 

data. 

Second, the model accounts for uncertainty at the party level by including a party-level random effect 

so that standard error estimates reflect uncertainty at that level. A conducted simulation study shows that 

models ignoring uncertainty at the party level exhibit excessive false positive rates. Even though no effect 

was specified in the simulation, government-level effects are significant over 40 percent of the time and 

party-level effects are significant over 60 percent of the time because models assume the independence of 

observations while, in reality, the same parties participate in governments over and over again. 

I demonstrate the model’s utility with an empirical application to the survival of coalition governments 

as predicted by the financial dependencies of parties. The results show that the more parties’ financial 

resources comprise contributions from their members, the higher the termination hazard of governments 

including those parties. Analyzing the aggregation function, I find that parties’ weight in the effect depends 

on their relative seat share in parliament. Therefore, when aggregating the effect of parties’ financial 

dependency on government survival, parties should be weighted by their relative seat share rather than 

evenly averaged. With this paper, I also contribute to the research infrastructure by providing the R package 

“rmm” to estimate this model in JAGS (Plummer 2003) from within R. 



 

7 

 

Micro-macro models to examine mutual interdependence 

Statistical methods used in social research often assume that data obtained from human respondents 

represent independent replications because models predicated on the independence assumption are 

mathematically convenient. In many cases, however, social research is concerned with the interdependence 

among individuals, and about how their interdependent actions shape social phenomena. Research in 

analytical sociology moves away from the assumption of independence by focusing on how social 

phenomena emerge from individuals being tied to one another in various ways. In the final chapter of this 

dissertation, I contribute to this research program, using a network modeling approach to examine how 

students’ interdependent friendship choices shape aggregate segregation patterns in US high schools. 

Chapter 3: “Socioeconomic segregation in adolescent friendship networks: A network analysis of social 

closure in US high schools.” 

A growing body of research in sociology and adjacent fields focuses on how networks and embedded social 

capital affect social inequality (Blau 1977; Lenkewitz 2023; Simmel 1908; van Tubergen and Volker 2015). 

A core finding of this line of research is that social embeddedness consolidates rather than alleviates 

inequality when networks are socioeconomically segregated.  

In this chapter, I examine the determinants of socioeconomic segregation in networks, which are 

important antecedents of the relationship between networks and inequality. Specifically, I examine the 

mechanisms underlying socioeconomic segregation in friendship networks in high school. The study 

addresses a key puzzle raised in Chetty et al. (2022), who identify greater socioeconomic homophily in 

high school friendship networks than prior studies: what is behind this friending bias? A well-developed 

literature in sociology on the determinants of racial segregation provides answers. This research highlights 

the importance of structural barriers, such as neighborhoods (Mouw and Entwisle 2006), courses (Frank, 

Muller, and Mueller 2013), and extracurricular activities (Schaefer, Simpkins, and Ettekal 2018), as well as 

intentional and unintentional boundary-making between groups with intersecting attributes (Moody 2001; 

Wimmer 2013; Zhao 2023). However, while these prior studies have focused on different potential 

determinants, they omitted measures of alternatives that may confound their results. In this chapter, I 
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integrate the disparate perspectives to disentangle their relative contributions to socioeconomic segregation 

using data from the National Study of Adolescent Health and exponential random graph modeling (ERGM).  

ERGM is a statistical network modeling approach that allows researchers to model friendship formation 

between interdependent individuals and to examine how these interdependent friendship choices shape the 

aggregate network structure (Duxbury 2024; Robins, Pattison, and Woolcock 2005; Snijders and Steglich 

2015). This is accomplished via empirically calibrated simulation. The approach is to generate synthetic 

networks from empirically calibrated exponential random graph models, in which the modeled friendship 

determinants (e.g., homophilous tendencies) are sequentially activated to determine how they shape 

socioeconomic segregation in the networks. In this way, friendship determinants at the micro level are 

directly linked to their structural implications at the macro level. While most prior applications of ERGM 

use the approach to study friendship formation, I show in this paper how it can be leveraged to examine 

micro-macro links. As such, the paper provides a blueprint for future research into the determinants of other 

macro-level network features, such as network cohesion, centralization, clustering, and composition. 

The results show that socioeconomic segregation in friendship networks in high school is characterized 

by exclusion of students in the bottom third and closure among students in the upper half of the SES 

distribution. While friendship networks are overall less socioeconomically segregated than they are racially 

segregated, the exclusion of low-SES students from high-SES cliques is as pronounced. Moreover, unlike 

racial segregation, socioeconomic segregation is unilateral rather than mutual: many friendship ties from 

low-SES students to high-SES peers are unreciprocated. The decomposition of determinants indicates that 

about half of the socioeconomic segregation in friendship networks can be attributed to differences in 

socioeconomic composition between schools. The other half is attributable to students’ friendship choices 

within schools and driven by stratified courses (about 13%) as well as racial and socioeconomic preferences 

(about 37%). In contrast, relational mechanisms like triadic closure – long assumed to amplify network 

segregation – have only minor effects on socioeconomic segregation. The large impact of racial homophily 

suggests that SES-integrated friendship networks in educational settings are difficult to achieve without 

also addressing racial segregation.  
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CHAPTER 1 

TREATMENT EFFECTS ON WITHIN-GROUP AND BETWEEN-GROUP INEQUALITY  

AN EXPLANATORY DECOMPOSITION APPROACH 

 

ABSTRACT 

Rising inequality has been linked to growing disparities within and between economic strata. Yet, existing 

approaches to analyzing inequality often disregard within-group inequality and are limited in addressing 

causal questions about why inequality is changing. This paper introduces an explanatory approach to 

examining how treatment variables impact within-group, between-group, and total inequality. The method 

permits both cross-sectional and longitudinal analyses. With longitudinal analyses, researchers can 

disentangle compositional changes (level of pre-treatment inequality, distribution of treatment across 

groups) from behavioral changes (changing treatment effects). Moreover, researchers can analyze changes 

relative to a timepoint (e.g., 1980) or relative to a counterfactual scenario (e.g., a counterfactual distribution 

of treatment). I demonstrate the utility of the approach by analyzing the changing effect of motherhood on 

women’s earnings and its consequences for women’s earnings inequality between 1980 and 2020. The 

results show that motherhood decreases women’s earnings inequality because it reduces inequality within 

economic strata.  
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INTRODUCTION 

The continuous rise in income inequality in the United States and several other countries over the past thirty 

years has rekindled interest in analyzing determinants of income inequality (McCall and Percheski 2010; 

Pew Research Center 2020). Many empirical methods in the social sciences (such as linear regression), 

however, are ill-suited to the analysis of income inequality because they are tailored toward explaining a 

distribution’s central tendency while inequality statistics measure its dispersion. Popular inequality 

statistics, such as the Gini coefficient, the variance, or quantile ratios, are not only a function of the mean 

but also of quantiles or higher moments of the income distribution. Further, approaches to the study of 

income inequality that are solely based on mean differences between groups, such as the Kitagawa-Blinder-

Oaxaca (KBO) decomposition (Blinder 1973; Kitagawa 1955; Oaxaca 1973) or the gap-closing estimand 

(Lundberg 2022), leave out an important component of the total income inequality—variation within 

groups. These approaches shift within-group variation to the unexplained part, which limits our 

understanding of changes in the income distribution as a whole. In fact, studies consistently find that much 

of the increase in inequality over the past thirty years can been attributed to an increase in “residual 

inequality”, that is, inequality within demographic groups (Juhn, Murphy, and Pierce 1993; Lemieux 2006; 

Western, Percheski, and Bloome 2008; Wodtke 2016)1.  

The distinction between within- and between-group inequality is not only statistically but also 

substantively important. Most research on inequality differentiates between groups—be it by race, 

education, income quantile, or country. Differentiating inequality within and between these groups helps 

researchers gain a better understanding of the origins and consequences of inequality. Within-group 

inequality measures disparities between members of the same group, which researchers can use to identify 

whether some groups are internally more unequal than others. This source of inequality across groups is 

 
1 The definition and number of groups obviously influences what is identified as within- and between-group change. 

However, even with fine-grained partitions, studies find that much growth in inequality in the past thirty years is due 

to an increase of inequality within demographic groups (e.g., Western, Percheski, and Bloome 2008, who differentiate 

300 groups). 
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qualitatively different from disparities in group means (i.e., between-group inequality). Indeed, owing to 

spatial segregation (Reardon and Bischoff 2011) and social comparison processes (Festinger 1954), people 

tend to experience within-group inequality much more directly than between-group inequality. Research on 

relative deprivation further highlights that rising within-group inequality tends to cause frustration with 

oneself while rising between-group inequality tends to cause frustration with outgroup members (Smith et 

al. 2012). Therefore, within- and between-group inequality measure distinct facets of social differentiation, 

differ in their consequences for social cohesion, and are thus both critical for our understanding of 

inequality. In fact, key fields of inequality research have gained leverage by differentiating within- and 

between-group inequality, such as work on the gender wage gap (Ferro-Luzzi 2010), class-based disparities 

(Weeden et al. 2007; Wodtke 2016), or global inequality (Firebaugh 2003; Goesling 2001).   

Not all inequality statistics are decomposable into within- and between-group components. Quantile 

ratios, for instance, are not decomposable in this way. By contrast, the variance, the coefficient of variation, 

and—under certain conditions—the Gini coefficient can be decomposed into within- and between-group 

components (Fortin, Lemieux, and Firpo 2011). Western and Bloome (2009) propose an approach to 

decomposing the variance to analyze trends in within- and between-group inequality. Their method, 

however, cannot address causal questions as it does not differentiate between covariates determining the 

groups and treatment variables impacting group outcomes. Despite the descriptive nature of the method, 

researchers employing it often rationalize their results even though such explanations are speculative. 

Wodtke (2016), for instance, explains the increase in inequality between social classes with the growing 

economic concentration, technological displacement of workers, and shifts in bargaining power, but is 

unable to actually test any of these hypotheses. Accordingly, to make the variance decomposition approach 

amendable to research of why within- and between-group inequality is changing, it must be translated into 

an explanatory framework.  

In this paper, I propose an explanatory variance decomposition approach that enables researchers to 

measure treatment effects on variance-based inequality statistics and decompose the effects into within- 
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and between-group components. The paper contributes to the development of methods to study inequality 

in five ways. 

First, I advance a treatment effect framework to quantify the effect of a treatment on the variance and 

variance-based inequality measures—both cross-sectionally and over time. The approach can be employed 

in experimental research to examine treatment effects and in observational research to examine predictor 

effects. In experimental research, scientists increasingly employ more complex designs in which treated 

subjects are differentiated by groups (e.g., by race, village, treatment arm) (Baldassarri and Abascal 2017) 

and are increasingly interested in analyzing treatment effect heterogeneities along the outcome distribution 

(Hohberg, Pütz, and Kneib 2020). In observational research, scientists are moving toward experimental 

thinking and modern methods of causal inference (Morgan and Winship 2014). The proposed approach 

contributes to these developments by proposing an explanatory framework to measure the impact of 

treatment variables beyond the mean. 

Second, I use this framework to extend the descriptive variance decomposition approach to 

decomposing treatment effects on the variance into within- and between-group components. This treatment 

effect decomposition helps researchers to not only identify the causes of rising inequality (why?) but also 

their mechanisms (how?) by linking individual-level effects to their consequences for group-level and total 

inequality (Goldthorpe 2015; Jackson 2022; Xie 2007, 2013). This is important because burgeoning causal 

research indicates that there are different mechanisms underlying changes in within- and between-group 

inequality. The growth in between-group inequality has been linked to, among other things, increasing 

returns to education (Autor, Levy, and Murnane 2003) and capital ownership (Piketty 2014). The surge of 

within-group inequality has been linked to labor market deinstitutionalization causing greater uncertainty 

within groups (Massey 2007), rising returns to unobserved skills (Juhn et al. 1993), and an increase in 

measurement error (Lemieux 2006). The proposed explanatory variance decomposition approach 

contributes to disentangling such within- and between-group mechanisms.  
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Third, I highlight that careful attention must be paid to the basic axioms of inequality measurement 

when decomposing the variance into within- and between-group components. Existing variance 

decomposition approaches often decompose the variance of log-income rather than the variance of income 

(e.g., Juhn et al. 1993; Lemieux 2006; Weeden et al. 2007; Western and Bloome 2009; Western et al. 2008; 

Wodtke 2016; Xie, Killewald, and Near 2016). The variance of logarithms, however, is not additively 

decomposable into within- and between group components because it does not respect the Pigou-Dalton 

principle of transfers (Cowell 1988, 2011; Foster and Ok 1999). In the paper, I discuss this issue and provide 

recommendations on how to circumvent the issue. 

Fourth, I apply the approach to examining the motherhood effect on women’s earnings inequality and 

find that motherhood reduces inequality in women’s earnings. This is true on an absolute level (compared 

to motherhood having no effect on earnings) and relative level (compared to 1980). The decomposition 

reveals that motherhood primarily reduces inequality within economic strata. The motherhood effect on 

inequality between economic strata is small relative to the within-group effect. This result highlights the 

risk of drawing misleading conclusions when inequality researchers base their analyses solely on mean 

differences between groups. 

Fifth, I introduce the R library ineqx, which implements both descriptive and explanatory variance 

decomposition approach. Despite the importance of analyzing within- and between-group inequality, 

relatively little empirical work has taken this on. This user-friendly R library, which is presented in 

Appendix 1, is intended to facilitate and popularize research using variance decomposition approaches. 

The paper proceeds as follows. In Section 2, I review existing approaches to delineate the contribution. 

I develop the explanatory variance decomposition in Section 3. Section 4 discusses the issue of using log-

income in the context of variance decompositions. In Section 5, I employ both descriptive and explanatory 

variance decomposition to study trends in women’s earnings inequality and examine how the changing 

impact of motherhood on earnings has contributed to these trends. Section 7 concludes.  
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METHODS TO STUDY INEQUALITY 

Methods to study the effect of covariates on distributional statistics other than the mean has been an active 

research area in the last decades (Fortin et al. 2011). This literature has produced a number of approaches 

to examine trends in inequality and their causes. In the following, I review these approaches to provide an 

overview and to delineate the contribution of the explanatory variance decomposition.  

An approach popular in sociology is to decompose inequality statistics into contributions by income 

source and their inter-correlations (Cancian and Reed 1999; Karoly and Burtless 1995; Schwartz 2010). 

Family demographers, for instance, have decomposed the variance of couple income into contributions by 

spouse to model the correlation among the two components (i.e., spousal income correlation). An advantage 

of this approach is that results are easy to interpret as an increase in the correlation among income 

components corresponds to an increase in inequality. A disadvantage, however, is that a correlation does 

not tell us anything about the behavior of individuals (e.g., an increase in the spousal income correlation 

does not tell us if one spouse is making more or the other one is making less). Another disadvantage is that 

it is an aggregate-level analysis. Gonalons-Pons, Schwartz, and Musick (2021), for instance, apply this 

approach to examine the effect of parenthood on inequality by measuring couples’ earnings correlation 

before and after childbirth. The difference in the correlation before and after childbirth, however, cannot be 

interpreted as a causal parenthood effect, as the correlations as well as their difference are aggregate 

quantities. The approach proposed in this paper, by contrast, defines treatment effects at the individual level, 

which, in principle, allows for a more causal interpretation. 

Another approach is to decompose inequality statistics by population subgroup (Shorrocks 1984). In 

this approach, researchers partition a population into mutually exclusive and exhaustive subgroups to then 

decompose total inequality into inequality within and between groups. The analysis of variance technique 

(ANOVA) is the basic idea behind this decomposition. Western and Bloome (2009) combine this classic 

variance decomposition approach with variance regression (Harvey 1976) to model the group means and 

variances (as functions of covariates) rather than to read them directly from the data. The advantage of this 

approach is that researchers can examine changes in the effect of variables that determine the groups. In an 
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application of the approach, for instance, Western, Bloome, and Percheski (2008) define 300 groups by 

intersecting four categorically coded variables (education, race, age, and family type). By comparing the 

actual development of inequality to a counterfactual development where the regression coefficient of, say, 

education had not changed during the observed period, they examine changes in the effect of education on 

within- and between-group inequality. This approach is descriptive because education (is part of what) 

determines the groups. The approach developed in this paper extends this descriptive approach to an 

explanatory framework by differentiating between grouping and treatment variable so that changes in the 

effect of a treatment administered to the groups can be examined. 

An approach similar to the approach proposed in this paper is Lemieux (2002), which unifies the KOB-

type decomposition of the variance by Juhn, Murphy, and Pierce (JMP) (1993) and the re-weighting 

procedure by DiNardo, Fortin, and Lemieux (DFL) (1996). Lemieux’s method also decomposes the effect 

of explanatory variables on inequality into within- and between-group inequality. An important difference, 

however, is that Lemieux (2002) only specifies an earnings equation (i.e., a mean model to quantify the 

contribution of explanatory variables on the between-group variance) and uses a re-weighting procedure to 

quantify the contribution of explanatory variables on the within-group variance. The method proposed in 

this paper, by contrast, models both mean and variance using variance regression (Harvey 1976), which 

results in a less convoluted approach and offers more transparency and flexibility regarding which variables 

go into the model and how. 

Finally, recent research has developed explanatory approaches based on conditional (Machado and 

Mata 2005; Melly 2005) and unconditional (Firpo, Fortin, and Lemieux 2009) quantile regression and 

extensions thereof (Chernozhukov, Fernández-Val, and Melly 2013; Firpo, Fortin, and Lemieux 2018). 

Quantile regression is a powerful instrument with which it is possible to estimate the effect of an 

explanatory variable on the entire distribution. A disadvantage of it, however, is that a large number of 

quantiles has to be estimated to yield a good approximation of the whole distribution, and that estimates 

must be constrained to avoid model inconsistencies (e.g., crossing quantiles). By contrast, variance 

regression—if the model is properly specified—estimates the effect of explanatory variables on the entire 
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distribution with much fewer parameters. Extensions of quantile regression, such as recentered influence 

function (RIF) regression (Firpo et al. 2018), allow to decompose the effect of an explanatory variable on 

any distributional measure into KOB-type coefficient and endowment effects. RIF regression, while 

promising due to its flexibility, is a linearization approach, which might poorly approximate the true impact 

of a variable.  

EXPLANATORY VARIANCE DECOMPOSITION 

I develop the explanatory variance decomposition in four steps. I start by reviewing the descriptive variance 

decomposition on which the approach builds. Subsequently, I add the treatment effect framework, which I 

first do for a single timepoint and then for changes over time. Finally, I discuss the estimation of treatment 

effects using variance regression. 

Descriptive variance decomposition 

Take the vector Yt to be individual2 incomes at time t, and the vector Gt to be the group to which the 

individuals belong, where Gt = j is a categorical variable with j = 1,… , J categories that represent mutually 

exclusive and exhaustive groups. The variance V in income at time t can then be expressed as the sum of 

the variances within and between groups3:  

Vt(Yt) =       E(V(Yt|Gt))      +               V(E(Yt|Gt))       

= ∑ πjtσjt
2

j⏟      
Within-group inequality

+∑ πjt (μjt −∑ πjtμjt
j

)

2

j⏟                
Between-group inequality

 

(1) 

where πjt is the proportion of individuals in group j at time t, μjt is the mean income in group j at time t, 

and σjt
2  is the variance around this mean in group j at time t.  

With repeated cross-sectional or panel data, the change in variance from t0 (baseline) to t (any timepoint 

post baseline) can then be decomposed into the sum of a within-group effect (δW
T ), a between-group effect 

(δB
T), and a compositional effect (δC

T). That is,  

 
2 Individuals are indexed by i = 1,2, . . . N, which I suppress to simplify notation. 
3 There is no covariance term because the groups are exclusive and exhaustive (law of total variance). 
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Vt − Vt0 = δW
T + δB

T + δC
T, where  

δW
T =∑ πjt0(σjt

2 − σjt0
2 )

j
 

δB
T =∑ πjt0 ((μjt −∑ πjtμjt

j
)

2

− (μjt0 −∑ πjt0μjt0
j

)

2

)
j

 

δC
T =∑(πjt − πjt0) ((μjt −∑ πjtμjt

j
)

2

+ σjt
2)

j
 

(2) 

The between-group effect captures the change in total variance induced by changes in the mean of each 

group. The within-group effect captures the change in total variance induced by changes in the variance 

around the mean of each group. Finally, the compositional effect captures the change in total variance 

induced by changes in the relative size of each group. The superscript T on the δs indicates that the change 

over time is considered. A derivation of equation (2) can be found in appendix 2.  

Decomposing the effect of treatment on inequality 

I first entertain the treatment effect framework at a single timepoint (and thus suppress subscript t). Let D ∈

{0,1} be a binary treatment, Y(D) be the potential outcome of individual income, and 𝜏 = Y(1) − Y(0) be 

the intra-individual causal effect of treatment on the outcome. Moreover, assume that the effect of this 

treatment on the total variance can be fully described by its effect on the group-specific means and 

variances. The group-specific treatment effect on the mean of the treated (ATT) then equals the expected 

value of the differences between the potential outcomes of the treated individuals in each group:  

ATTj = E[Y(1) −  Y(0) |G = j, D = 1] (3) 

Similarly, the group-specific treatment effect on the variance of the treated (VTT) then equals the 

difference between the variances in the potential outcomes of the treated individuals in each group: 

VTTj = V[Y(1)|G = j, D = 1] − V[Y(0)|G = j, D = 1] (4) 

The VTT is thus defined as the difference in each group between the variance of the treated individuals 

and the counterfactual variance in which these individuals were not treated4. The focus lies on the treatment 

 
4 The VTT is not the variances of the group-specific treatment effects (i.e., V[Y(1) −  Y(0)|G = j, D = 1]). 
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effect on the treated individuals (i.e., ATT and VTT) rather than all individuals (i.e., ATE and VTE) because 

only those individuals who receive the treatment will affect the observed variance.  

Given these definitions, the effect of treatment on the variance can be decomposed into a within- and 

between group component: 

V[Y(1)|D = 1] − V[Y(0)|D = 1] = δB
D + δW

D , where 

δB
D =∑ πj ((μj + βj −∑ πj(μj + βj)

j
)

2

− (μj −∑ πjμj
j

)

2

)
j

 

δW
D =∑ πj(σj + λj)

2

j
−∑ πjσj

2

j
 

(5) 

The interpretation of the parameters changes in the explanatory variance decomposition. In the 

descriptive decomposition (equation 2), πj is the relative size of each group, and μj and σj are the mean and 

standard deviation in each group. In the explanatory variance decomposition (equation 5), by contrast, πj 

is the proportion receiving treatment in each group, and μj and σj are the pre-treatment mean and standard 

deviation in each group5. Further, βj is the treatment effect on the mean in each group (i.e., ATTj), and λj is 

the treatment effect on the standard deviation in each group (i.e., √VTTj). The superscript D on the δs 

indicates that the change caused by treatment (at a single timepoint) is considered.  

The between-group effect δB
D captures the change in total variance induced by the effect of treatment 

on the mean of each group. The within-group effect δW
D  captures the change in total variance induced by 

the effect of treatment on the variance of each group.  

Example 

The following example illustrates that it is not possible to directly infer whether inequality will go up or 

down just from the effect of treatment on the group-specific means and variances (i.e., the βs and the λs). 

Take the stylized case of an organization with two groups—say workers and managers—of which an equal 

share receives a bonus, and we are interested in how this treatment affects within- and between-group 

 
5 Note that in the cross-sectional case, the pre-treatment means and standard deviations are equal to the means 

and standard deviations of the untreated.   
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inequality. In this example, the effect of treatment on the between-group variance in equation (5) reduces 

to  

δB
D =

(βw − βm)(2μw − 2μm − βm + βw)

4
 

(6) 

Equation (6) shows that the impact of treatment on between-group inequality does not only depend on 

the treatment effects βw and βm themselves but also on the groups’ position in the income distribution 

before treatment, that is, the distance between the pre-treatment group means, μw and μm. Moreover, while 

absolute inequality measures (like the variance) do not change when treatment affects the group means in 

the same sign and magnitude, relative inequality measures (like the coefficient of variation) do change even 

if βw = βm because they also depend on the distance of the group-specific means to the grand mean prior 

to treatment6.  

The effect of treatment on the within-group variance in equation (5) reduces to 

δW
D =

λw
2 + λm

2 + 2σwλw + 2σmλm
2

 
(7) 

Equations (7) shows that the impact of treatment on within-group inequality, likewise, does not only depend 

on the treatment effects λw and λm but also on the group’s pre-treatment standard deviations, σw and σm. 

Moreover, in contrast to the effect on between-group variance, the within-group variance will change even 

if λw = −λm because the effect is a multiplicative of the pre-treatment standard deviations. It is, 

consequently, difficult to gauge the treatment effect on within-group, between-group, and total inequality 

by “eyeballing” it. Instead, the effect should be calculated as outlined in this section—in particular if there 

are more than two groups and the proportion receiving treatment differs across groups. 

 
6 In this example, the effect of treatment on the between-group CV2 would be  

δB
D =

4(βw
2 μwμm+βmμw(−μw

2 +μm(βm+μm))−βw(−μw
2 μm+μm

3 +βm(μw
2 +μm

2 )))

(μw+μm)
2(βw+βm+μw+μm)

2  and the effect of treatment on the within-

group CV2 would be δW
D = −

2(σw
2 +σm

2 )

(μw+μm)
2 +

2((σw+λw)
2+(σm+λm)

2)

(βw+βm+μw+μm)
2 . These effects do not generally equal 0 when the 

treatment effects are equal across groups. 
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Decomposing the change in the effect of treatment on inequality over time  

The previous section showed that the treatment effect on the variance depends on the treatment effect on 

the group-specific means and variances, on the distribution of treatment across groups, and on the level of 

pre-treatment inequality. Therefore, with repeated cross-sectional or panel data, the change in total variance 

from t0 (baseline) to t (any timepoint post baseline) due to a change in the effect of treatment can be 

decomposed into the sum of a between-group effect (δB
D,T

), within-group effect (δW
D,T

) a compositional effect 

(δC
D,T

), and a pre-treatment effect (δP
D,T

)7: 

(V[Yt(1)|Dt = 1] − V[Yt(0)|Dt = 1]) − (V[Yt0(1)|Dt0 = 1] − V[Yt0(0)|Dt0 = 1]) 

= δB
D,T + δW

D,T + δC
D,T + δP

D,T
, where 

(8) 

δB
D,T = B(πt0 , μt0 + βt) − B(πt0 , μt0 + β0) 

         = ∑ πj,t0 ((μj,t0 + βj,t − ∑ πj,t0(μj,t0 + βj,t)j )
2
− (μj,t0 + βj,t00 − ∑ πj,t0(μj,t0 + βj,t0)j )

2
)j   

δW
D,T = W(πt0 , σt0 + λt) −W(πt0 , σt0 + λt0) 

         = ∑ πj,t0 ((σj,t0 + λj,t)
2
− (σj,t0 + λj,t0)

2
)j   

δC
D,T = (B(πt, μt0 + βt) − B(πt0 , μt0 + βt)) − (B(πt, μt) − B(πt0 , μt)) 

              + (W(πt, σt0 + λt) −W(πt0 , σt0 + λt)) − (W(πt, σt) −W(πt0 , σt))  

         ≈ ∑ (πj,t − πj,t0) ((μj,t0 + βj,t −∑ πj,t(μj,t0 + βj,t)j )
2
− (μj,t −∑ πj,tμj,tj )

2
+ (σj,t0 + λj,t)

2
− σj,t

2 )j   

        if ∑ πj,t0μj,tj ≈ ∑ πj,tμj,tj . The exact equation is given in appendix A2.3. 

δP
D,T = B(πt, μt + βt) − B(πt, μt0 + βt) +W(πt, σt + λt) −W(πt, σt0 + λt) 

              − (B(πt0 , μt) − B(πt0 , μt0) +W(πt0 , σt) −W(πt0 , σt0))  

         = ∑ πj,t ((μj,t + βj,t − ∑ πj,t(μj,t + βj,t)j )
2
− (μj,t0 + βj,t − ∑ πj,t(μj,t0 + βj,t)j )

2
+ (σj,t + λj,t)

2
−j

(σj,t0 + λj,t)
2
) − ∑ πj,t0 ((μj,t −∑ πj,t0μj,tj )

2
− (μj,t0 − ∑ πj,t0μj,t0j )

2
+ σj,t

2 − σj,t0
2 )j   

 
7 Rather than decomposing the change in the effect of treatment on the variance, the change in the post-treatment 

variance induced by the change in the effect of treatment, i.e., V[Yt(1)|Dt = 1] − V[Yt0(1)|Dt0 = 1], can also be 

decomposed. This decomposition is presented in appendix A2.4. In equation (8), W(π, σ2) = ∑ πjσj
2

j  and B(π, μ) =

∑ πj(μj − ∑ πjμjj )
2

j  are the within- and between-group equation functions of the V that take the parameter vectors 

π = π1, … , πJ,  σ
2 = σ1

2, … , σJ
2, and μ = μ1, … , μJ as input. 
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The between-group effect captures the change in the effect of treatment on the variance induced by a 

change in the effect of treatment on the group means. The within-group effect captures the change in the 

effect of treatment on the variance induced by a change in the effect of treatment on the group variances. 

These two effects are analogous to the “coefficient effect” of a KBO decomposition across time (Kröger 

and Hartmann 2021). A KBO decomposition, however, does not calculate the within-group effect as it only 

considers mean differences. The compositional effect represents the change in the effect of treatment on the 

variance induced by a change in the distribution of treatment across groups. This effect is analogous to the 

“endowment effect” of a KBO decomposition across time with a binary covariate. A KBO decomposition, 

however, ignores the endowment effect on the within-group variance. Finally, the pre-treatment effect 

captures the change in the effect of treatment on the variance due to a change in pre-treatment inequality 

(i.e., μj,t0 and σj,t0)
8. The superscript D,T on the δs indicates that the change induced by the change in 

treatment over time is considered. The derivation of equation (8) can be found in appendix A2.3.  

Estimating the effect of treatment on the group-specific means and variances  

Having established the aggregate consequences of treatment, next I turn to how the treatment effect on the 

group-specific means and variances can be estimated in an empirical model. To simplify the exposition, I 

discuss treatment effect estimation at a single timepoint. The same approach, however, can be used with 

longitudinal data by estimating treatment effects for each timepoint separately.  

In Western and Bloome’s (2009) descriptive variance decomposition, the relevant estimand are the 

group-specific means (μj) and variances (σj
2) as the interest lies on the effect of belonging to a group. They 

use variance regression to model the group-specific means and variances (Harvey 1976). Despite the name, 

the standard deviation σj rather than the variance σj
2 is typically modeled with variance regression:  

μj = E(Y|G) = αG 

log(σj) = log(SD(Y|G)) = δG 

(9) 

 
8 The pre-treatment effect does not exist in a descriptive variance decomposition because it does not differentiate 

between pre- and post-treatment means and variances. 
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In equation (9), Gt is a matrix of dummy variables representing the groups and the intercepts are omitted 

so that the coefficients can directly be taken as mean and (log) standard deviation of each group. In the 

explanatory variance decomposition, by contrast, the relevant estimand is the treatment effect on the group-

specific means and variances as the interest lies in the effect of a treatment administered to a group9. 

Accordingly, the treatment effects on the group-specific means and standard deviations are modeled. While 

any suitable estimator can be used to estimate these effects, the R library accompanying this paper facilitates 

using the simple difference and the difference-in-difference estimator.  

Simple difference estimator 

To identify the treatment effect on the group-specific means and variances, the grouping variable G and the 

treatment variable D must be separated and interacted: 

μj = E(Y|G) = αG + βGD + γZ 

log(σj) = log(SD(Y|G)) = δG + λ
∗GD + ρZ 

(10) 

where α and δ are the group-specific pre-treatment means and standard deviations, β and λ are the group-

specific treatment effects on the mean and standard deviation, and γ and ρ are effects of control variables. 

Since in equation (10) the treatment effect on the standard deviation is modeled multiplicatively, λj equals 

exp(δjG + λj
∗GD + ρZ) − exp(δjG + ρZ). 

To interpret the treatment effects estimated in equation (10) as causal effects, the conditional 

independence assumption must hold. Control variables Z can be included in the model to render this 

assumption more plausible. The conditional independence assumption states that, conditional on some 

control variables Z, the potential outcomes under treatment Y(1) and control Y(0) are independent of the 

treatment status D itself, that is, Y(1), Y(0) ⊥ D|G, Z. In other words, treatment is random given the controls. 

For the mean, the causal effects are defined as the average difference in potential outcomes in each group. 

 
9 Note that groups are defined exogenously. Treatment effects will thus be biased if group membership is 

correlated with unobserved confounders. Treatment effects are, however, unaffected by group-specific selections into 

treatment or treatment effects since they are modeled. 
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That is, E[Y(1) − Y(0)|D = 1, G, Z]⏟                
ATT

= E[Y|D = 1, G, Z] − E[Y|D = 0, G, Z]⏟                      
quantity estimated in eq. (10)

. For the standard deviation, the 

causal effects are defined as the average difference in the standard deviation of the potential outcomes in 

each group: E[SD[Y(1)|D = 1, G, Z] − SD[Y(0)|D = 1, G, Z]]⏟                              
√VTT

= E[SD[Y|D = 1, G, Z]] − E[SD[Y|D = 0, G, Z]]⏟                            
quantity estimated in eq. (10)

. 

Difference-in-difference estimator 

If pre- and post-treatment observations are available, a difference-in-difference (DID) estimator can be 

specified to identify the treatment effects on the mean and variance in each group:  

μj = E(Y|G) = αG + φGP + βGDP + γZ 

log(σj) = log(SD(Y|G)) = δG + ψGP + λ
∗GDP + ρZ 

where P ∈ {0,1} indicates pre/post-treatment status.  

(11) 

where α and δ are group-specific pre-treatment means and standard deviations, φ and ψ are group-specific 

post-treatment means and standard deviations, β and λ∗ are group-specific treatment effects on the mean 

and standard deviation, and γ and ρ are effects of control variables. Again, since in equation (11) the 

treatment effect on the standard deviation is modeled multiplicatively, λj equals exp(ψjGP + λj
∗GDP +

ρZ) − exp(ψjGP + ρZ). 

The DID estimand is the average difference of potential outcomes post treatment of those who receive 

treatment: E[Y(1) − Y(0)|D = 1, P = 1, G]. The DID estimator captures this effect if the trend from pre- to 

post-treatment in the absence of treatment, i.e., E[Y(0)|P = 1, G] − E[Y(0)|P = 0, G], is the same for those 

who receive treatment and those who do not (common trends assumption). If this common trends 

assumptions holds, the treatment effects estimated in equation (11) are causal effects. For the mean, the 

causal effects are defined as the average difference in potential outcomes post treatment in each group: 

E[Y(1) − Y(0)|D = 1, P = 1, G]⏟                    
ATT

=

(E[Y|D = 1, P = 1, G] − E[Y|D = 0, P = 1, G]) − (E[Y|D = 1, P = 0, G] − E[Y|D = 0, P = 0, G])⏟                                                            
quantity estimated in eq.  (11)

.  
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For the standard deviation, the causal effects are defined as the average difference in the standard 

deviation of the potential outcomes in each group: E[SD[Y(1)|D = 1, P = 1, G] − SD[Y(0)|D = 1, P = 1, G]]⏟                                    
√VTT

=

(E[SD[Y|D = 1, P = 1, G]] − E[SD[Y|D = 0, P = 1, G]]) − (E[SD[Y|D = 1, P = 0, G]] − E[SD[Y|D = 0, P = 0, G]])⏟                                                                        
quantity estimated in eq.  (11)

 

In conclusion, while the simple difference estimator in equation (10) relies on the plausibility of the 

conditional independence assumption, the difference-in-difference estimator in equation (11) depends on 

the plausibility of the common trends assumption. If it holds, the DID estimator removes biases in post-

treatment comparisons between treated and control that are the result of permanent differences between 

those groups, as well as biases from comparisons over time in the treated group that are the result of trends 

due to other causes of the outcome.  

VARIANCE-BASED INEQUALITY MEASURES 

Three of the most commonly used inequality measures are based on the variance and thus can be 

decomposed with the approach presented in the previous section: the variance V =
1

n
∑ (yi − y̅)

2
i , the 

variance of the logarithms VL =
1

n
∑ (ln yi −

1

n
∑ ln yi)

2

i , and the squared coefficient of variation CV2 =

V y̅2⁄ , which divides the variance by the squared mean and is a member of the generalized entropy family. 

In this section, I discuss important properties of these three inequality measures to show that researchers 

should not incautiously use VL in the context of variance decompositions as taking the log can bias the 

decomposition. 

The literature on inequality measurement has developed a list of inequality indices as well as an 

axiomatic framework to assess those indices with respect to desirable properties of inequality measures. 

The five inequality axioms are (Allison 1978; Cowell 2011): 

1. Pigou-Dalton principle of transfers. An inequality measure should decrease after any transfer of income 

from a higher to lower income earner that does not change the ranking of incomes (and vice versa). 
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2. Additive decomposability. If a population can be partitioned into mutually exclusive and exhaustive 

subgroups, an inequality measure should be additively decomposable into within- and between-group 

inequalities.  

3. Scale independence. An inequality measure should be insensitive to proportional changes in income, 

including changes in the units of measurement.  

4. Principle of population. A measure should be invariant to proportional changes in the size of the 

underlying population. 

5. Anonymity. Any permutation of incomes should leave the measure unchanged. 

In following, I discuss axioms 1 through 3 as 4 and 5 are met by all variance-based inequality measures. 

The evaluation is summarized in Table 4. 

Pigou-Dalton principle of transfers 

The principle of transfers is the most important of the five axioms because indices violating it move in 

wrong directions after certain transfers. That is, they may increase after inequality-decreasing transfers (i.e., 

transfer of income from a higher to lower income earner that does not change the ranking of incomes) and 

vice versa. The V, CV2, and Gini coefficient respect the transfer principle. The VL, however, violates the 

principle for transfers above 2.7 times the geometric mean (Allison 1978; Cowell 1988, 2011; Foster and 

Ok 1999; Wolfson 1994). Take the following income distribution as an example: 

Table 1: Two hypothetical income distributions 

Year Income distribution Arithmetic mean Geometric mean 

1 𝑦1 = (1,1,1,1,1,1,1,1,1,281)  𝑦̅1 = 29 𝑦̅1 = 1.8 

2 𝑦2 = (1,1,1,41,41,41,41,41,41,41) 𝑦̅2 = 29 𝑦̅2 = 13.5 

𝑦2 can be obtained from 𝑦1 by six progressive transfers (i.e., from rich to poor). Accordingly, the 

corresponding Lorenz curves in Figure 1 display a decrease of inequality from year 1 to 2. Table 2 shows 

that this decrease in inequality is captured by V, CV2, and the Gini coefficient. The VL, however, increases. 

This behavior has led Wolfson (1994) to call for the VL to be banned from inequality analysis.  
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Figure 1: Lorenz curves corresponding to the distributions in Table 1 

 
The long-dashed line represents equality and deviations from it represent increases in inequality. 

 

Table 2: Inequality statistics corresponding to the distributions in Table 1. 

Year V 𝑉𝐿 CV2 Gini 

1 7840 3.18 9.32 0.87 

2 373 3.22 0.44 0.29 

All inequality statistics record a decrease of inequality except for the VL. 

 

Additive decomposability 

While the issue that the VL violates the transfer principle is not novel, its consequences for the variance 

decomposition framework have not received careful attention in the literature. The variance decomposition 

framework is centered around the arithmetic mean (i.e., 𝑦̅ =
1

n
∑y) since both within-group variance (W =

∑∑(yij − y̅j)
2
) and between-group variance (B = ∑(y̅j − y̅)

2
) include it. The VL, however, depends on the 

on the geometric mean (i.e., y̅∗ = √y1y2…yn
n ) because VL =

1

n
∑ (ln yi −

1

n
∑ ln y)

2

i and 
1

n
∑ ln y =

(∏y)1/n = √y1y2…yn
n . In expectation, the geometric mean converges to E[(y1y2…yn)

1 n⁄ ] =

exp(E[log(y)]) while the arithmetic mean converges to E[y] = E[exp(log(y))]. These quantities are not 

the same. In fact, E[(y1y2…yn)
1 n⁄ ] ≤  E[y]. Because of this, some spreads leave the arithmetic mean 

unchanged but decrease the geometric mean and vice versa—as is the case in the example of Table 1. The 

VL, therefore, is not additively (i.e., linearly) decomposable as within-and between-group variances cannot 

be properly separated (Cowell 1988, 2011; Foster and Ok 1999).  
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Another concern about the VL in the context of additive decomposability is that the effect of transfers 

depends on the income level at which the transfers occur. The VL is more sensitive to transfers that occur at 

lower income levels whereas V and CV2 are equally sensitive to transfers at all income levels. This feature 

may be desirable, for instance, to represent diminishing marginal utility of income. However, from a 

measurement perspective, it seems incoherent to linearly decompose an inequality measure with a nonlinear 

distance concept. 

Figure 2 and Table 3 provide an example to illustrate these two issues. The figure displays income 

distributions of two groups of equal size at two timepoints. The two groups have different means that are 

constant over time and the same standard deviation (SD) of 20 at timepoint 1. At timepoint 2, the SD of 

group A decreases to 17 and the SD of group B increases to 60. The table reports the results of a descriptive 

decomposition (as a percentage of the inequality at timepoint 1). While V and CV2 record an increase of 

within-group inequality, VL records a decrease. This is because the VL first nonlinearly weighs the changes 

within the groups due to the log-transformation but then linearly averages them when computing the change 

in within-group variance. Further, while V and CV2 correctly record no change in between-group inequality, 

VL suggests a decrease owing to its dependence on the geometric mean. 

Figure 2: Hypothetical income distributions of two groups of equal size at two timepoints 
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Solid lines represent the income distribution at timepoint 1, dashed lines represent the income distributions 

at timepoint 2. The means and standard deviations of the four distributions are as follows: μA,1 = μA,2 =

100, μB,1 = μB,2 = 500, σA,1 = σB,1 = 20, σA,2 = 17, σB,2 = 60. 

Table 3: Results of a descriptive decomposition (as a percentage of the inequality at timepoint 1) 

 CV2 V VL 

 Within Between Within Between Within Between 

Time 1 100 100 100 100 100 100 

Time 2 302 100 302 100 95.4 98.8 

A way to restore the VL as a useful inequality statistic is to interpret 𝑦∗ = ln y as the latent utility of 

income. On this latent scale, the VL respects the transfer principle and is decomposable because it reduces 

to the V. Further, the distributional properties of 𝑦∗ can improve parameter estimation and provide 

robustness to extreme values10. Researchers, however, should not incautiously equate the variance in the 

utility of income with the variance in actual income. There is no simple correspondence between the two. 

The variance in utility may increase while the variance in income decreases and the decomposition of utility 

may indicate a change in within- or between-group inequality while the decomposition of income does not. 

Further, researchers should understand that, by choosing the latent scale interpretation, they switch from a 

relative inequality measure (VL) to an absolute one (V). 

Since interpreting ln y as the utility of income also comes with rather specific assumptions about human 

nature, I recommend sticking to the original (dollar) scale and using the V (absolute inequality) or the CV2 

(relative inequality) as appropriate because both indices respect the transfer principle and are additively 

decomposable. I derive the descriptive and explanatory variance decomposition of the V in section 2 and 3 

and the descriptive and explanatory variance decomposition of the CV2 in Appendix 2.  

Previous applications of the descriptive variance decomposition all decompose the VL (e.g., Juhn et al. 

1993; Lemieux 2006; Weeden et al. 2007; Western and Bloome 2009; Western et al. 2008; Wodtke 2016; 

 
10 Note, however, that the VL is not more robust to extreme values than the CV2 (Cowell and Victoria-Feser 1996). 

It should be investigated if other means to improving parameter estimation, such as 𝑦∗ = √𝑦, also lead to a violation 

of the transfer principle. 
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Xie, Killewald, and Near 2016)11. This is unproblematic if the results are interpreted on a latent scale. I 

exemplarily replicated the analysis of Wodtke (2016) in Appendix 4 and find that the overall interpretation 

of the results does not change when I replace the VL with the CV2. In the application below, however, I 

demonstrate that results can deviate substantially. I, therefore, recommend making a deliberate decision 

about which inequality measure to use and how to interpret it. 

Scale independence 

An often-cited issue of the V as inequality measure is its scale dependence as an absolute measure of 

inequality. The variance quadruples when everyone’s income doubles even though the relative distance 

among individuals is unchanged. VL and CV2, by contrast, are scale-independent relative inequality 

measures12, making it unnecessary to convert currencies when comparing countries or to adjust for inflation 

when assessing change over time. However, I argue that the decision of whether to use an absolute or a 

relative inequality measure should be based on a theory of social welfare rather than computational 

convenience since these operations are simple to perform nowadays. Most inequality research measures 

inequality relatively because it is assumed that the marginal utility of income declines as income increases. 

While this argument has an individual-psychological foundation (Kahneman and Tversky 1979), from 

societal-sociological perspective, it is less convincing to consider inequality unchanged by any 

proportionate increase in everyone’s income. This is because, in absolute amounts, the rich benefit more 

than the poor from proportionate increases, and many goods and services in society are disproportionally 

valuable, making it essential to be able to purchase them (e.g., the utility of an ivy league degree compared 

to a community college degree). Consequently, researchers should carefully consider whether absolute 

inequality or relative inequality is the quantity of interest in their application when deciding which 

 
11 The exceptions are Breen and Chung (2015), who decompose the CV2, and Liao (2019), who decomposes the 

Gini coefficient and the Theil index. 
12 VL is scale-independent because Var(ln(2y)) = Var(ln(2) + ln(y)) = Var(ln(y)), and the CV2 is scale-

independent because the variance and the squared mean are on the same scale and their ratio is thus dimensionless. 



 

32 

 

inequality measure to decompose as the scale dependence of the V is not an issue if all values are brought 

onto one scale. 

Table 4: Properties of variance-based inequality measures 

Inequality 

measure 

Scale 

independence 

Transfer 

principle 
Decomposability  

Population 

principle 
Anonymity Sensitivity 

V no yes yes yes yes equal 

VL yes no no yes yes lower 

CV2 yes yes yes yes yes equal 

 

EMPIRICAL EXAMPLE: THE CHANGING IMPACT OF MOTHERHOOD ON EARNINGS 

INEQUALITY  

In what follows, I apply the variance decomposition approach developed in section 3 to examine the 

changing impact of motherhood on women’s earnings and its consequences for women’s earnings inequality 

between 1980 and 2020. I use this example to demonstrate the utility of the proposed approach for 

understanding how individual-level change contributes to aggregate inequality trends. I divide the research 

question into two applications. Application 1 is a descriptive variance decomposition that breaks inequality 

trends into within- and between-group components to discuss the consequences of using the VL in context 

of a variance decomposition. Application 2 then showcases the explanatory variance decomposition by 

examining the degree to which these trends are caused by the changing impact of motherhood on women’s 

earnings. In both applications, I group women by household economic position to analyze the degree to 

which inequality trends are differentiating women within or between economic strata. 

Data and measurements 

Current Population Survey Panels. My data source is the 1980-2020 Current Population Surveys (CPS), 

which have been extensively used to study changes in inequality in the US. I restrict my sample to adult, 

partnered women of childbearing age (18-49) and weigh observations by their inverse sample inclusion 

probability.  

Women’s earnings. I use the Outgoing Rotations Group supplement of the CPS collected in months-in-

sample 4 and 8 to measure women’s weekly pre-tax wage and salary income adjusted for inflation to 2010 
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dollars using the consumer price index (CPI-U) (Crawford, Church, and Akin 2014). I exclude earnings 

from the self-employed but include zero-earners and those not working for pay.  

Motherhood. Owing to the sampling design of the CPS, about 70 percent of respondents can be linked 

across subsequent months of survey participation (Drew, Flood, and Warren 2014). I use these newly 

available identifiers to create short-term panels, tracking earnings across two timepoints (months-in-sample 

4 and 8) that are 12 months apart. Following Musick and Jeong (2021), I measure the change in earnings 

of women who gave birth in between the two timepoints. This approach thus identifies the immediate 

impact of motherhood on earnings. To also capture longer-term effects, I additionally measure the change 

in earnings of young mothers with an eldest child up to the age of 5. By modeling motherhood as a 

categorical variable, I can evaluate both the effect of transitioning to motherhood and the effect of having 

a young child compared to not having children. I then calculate the average within-person change in 

earnings following motherhood up to child age 5 by averaging across these effects (1-year-old vs. no child, 

2-year-old vs. no child, etc.). Therefore, the estimated motherhood effect captures both immediate and 

longer-term effects of motherhood on earnings. For different-sex couples, I take her information on own 

children in the household, and, for same-sex couples households, I take the household head’s information 

on own children in the household. I restrict my sample to partnered women because the single women in 

the sample exhibit a high panel attrition that may be endogenous to the motherhood effect. 

Household economic position. I measure women’s economic position prior to childbirth by the total 

annual household income. This variable has been collected as part of the basic monthly survey since 1982 

in categorical form and includes earnings and nonlabor income of all household members. I take the middle 

values of each category, adjust them for inflation to 2010 dollars, and then compute the 20 and 80 percentiles 

to categorize women into low, medium, and high economic position.  

Time. I pool the data in 5-year intervals to reduce noise in the estimates. 

For the explanatory variance decomposition, I use the following control variables (measured prior to 

childbirth): age, education, race, marriage status, and family size. 
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The final sample includes 498,388 adult women of the childbearing age (18-49) between 1982 and 

2020 for which two observations are available (84 percent link rate) and with no missing values on all 

relevant variables. 69,922 of those women (~1793 per year) either become mothers at the second timepoint 

or already are mothers at the first timepoint with an eldest child up to age 5 at the second timepoint. 

Application 1: Descriptive decomposition of women’s earnings inequality 

Figure 3 depicts the mean and standard deviation of women’s earnings by economic strata and over time 

estimated using variance regression (equation 9). We can see that both mean and standard deviation have 

been growing steadily across economic strata in the past four decades. One might be inclined to take the 

steeper slopes for women in high-income households as evidence for a steady rise of inequality. Figure 4 

shows that this is true in absolute terms (as measured by V). Relative inequality, however, declined 

substantially between 1980 and 2000 and has since remained constant (as measured by Gini or CV2) or 

increased again (as measured by VL).  

In the following, I examine these trends using a descriptive variance decomposition (equation 2). I 

decompose the CV2 rather than the V to compare the results to a decomposition of the VL. Figure 5 presents 

the results of this decomposition graphically, splitting the overall change in the CV2 into changes in within-

group inequality, between-group inequality, and changes in the size of economic strata13. For the CV2, the 

figure shows that inequality between economic strata increased in the early 1980s but has since remained 

constant and, thus, cannot explain the decline in total inequality between 1980 and 2000. Changes in the 

size of economic strata do not account for much of the decline in total inequality either. Instead, the 

decomposition reveals that the decline owes to a decrease of inequality within economic strata during this 

period14. This result demonstrates that researchers run the risk of ignoring significant changes in inequality 

by solely focusing on mean differences across groups (i.e., between-group inequality). 

 
13 Table A3.1 in Appendix 3 provides the results in table form. 
14 Figure A3.1 in the appendix confirms that the group-specific CVj

2 (i.e., σj
2 μj

2⁄ ) declined during this time for all 

three groups. 
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The decomposition of the VL, in contrast, suggests that both within- and between-group inequality have 

been increasing since 2000. It difficult to discern the extent to which these contradictory results are a 

consequence of the VL violating of the transfer principle or the VL using a nonlinear distance concept. 

Regardless the reason, the stark differences between CV2 and VL highlight that researchers should be 

cautious about logging income in variance decompositions. 

Application 2: Explanatory decomposition of the motherhood effect 

There is an extensive body of literature on the motherhood penalty (Budig and England 2001; Cukrowska-

Torzewska and Matysiak 2020). By contrast, we know much less about how the motherhood effect shapes 

women’s earnings in ways that contribute to aggregate inequality (but see Gonalons-Pons, Schwartz, and 

Musick 2021; Harkness 2013; Kleven, Landais, and Søgaard 2019).  

Therefore, as a next step, I examine how the changing effect of motherhood on women’s earnings has 

impacted women’s earnings inequality using a explanatory variance decomposition. In keeping with prior 

work in this literature, I focus on relative inequality and therefore decompose the CV2 rather than the V. 

The decomposition breaks the motherhood effect into four components—a within-group effect, a between-

group effect, a compositional effect, and a pre-treatment effect. The within- and between-group components 

describe how much changes in the motherhood effect (i.e., changes in employment, hours, and wages) have 

affected the inequality of women within and between economic strata. The compositional component 

describes how much changes in the share of mothers have affected inequality of women within and between 

economic strata. Finally, the pre-treatment component describes how much changes in the inequality prior 

to motherhood have affected inequality of women within and between economic strata. This decomposition, 

therefore, disentangles the distinct behavioral and compositional mechanisms underlying the total impact 

of motherhood on inequality.  
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Figure 3: Weekly earnings of women of childbearing age 

 
 

Figure 4: Absolute and relative earnings inequality of women of childbearing age 

 
 

Figure 5: Descriptive decomposition of the change in the 𝐶𝑉2 and the 𝑉𝐿 since 1982 (in points) 
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Figure 6: Motherhood effect on the mean (𝛽) and standard deviation (𝜆) of earnings 

 
 

Figure 7: Decomposition of the motherhood effect on the 𝐶𝑉2 

 
 

Figure 8: Decomposition of the motherhood effect on 𝐶𝑉2 compared to a zero-effect 
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I use a difference-in-difference estimator and demographic controls to estimate the within-person effect 

on the mean and variance of women’s earnings of having a child up to age 5 in the household, compared to 

not having children. The difference-in-difference estimator removes all time-constant differences between 

nonmothers and mothers as well as any time trends affecting both nonmothers and mothers. The 

demographic controls (age, education, race, marriage status, and family size) are included to ensure that 

observations are conditionally independent should the common trends assumption not hold.  

This research design has several limitations. First, the plausibility of the common trends assumption 

cannot be examined as only one pre-treatment observation is available. Second, the effect of motherhood 

on women’s earnings may be underestimated if expectant mothers reduce their work commitments prior to 

giving birth as earnings recorded before childbirth would be lower than usual. This underestimation will 

affect the impact estimates of motherhood on inequality within and between groups if women reduce their 

work commitments differently across economic strata.  

Figure 6 displays the estimates of the motherhood effect (in dollars per week) on the mean and standard 

deviation of women’s earnings. The figure shows that the motherhood effect on mean earnings is negative, 

and that the earnings losses following motherhood are lowest for women in low-income households and 

highest for women in high-income households15. In line with previous research (Glauber 2018), we can see 

that the earnings losses have been declining since the 1980s—most significantly for women in high-income 

households. The motherhood effect on the standard deviation of earnings is likewise negative. That is, 

women within economic strata differ in earnings more before than after motherhood. This convergence of 

earnings following motherhood since the 1980s has been decreasing for women in low-income households, 

increasing for women in high-income households, and relatively stable for women in medium-income 

households.  

 
15 I estimate the absolute effect in dollars rather than the relative effect in percent of pre-birth earnings because 

the dollar amount is what determines the impact on aggregate inequality. Further, note that the motherhood effect is 

strongest following childbirth and attenuates as children age. I average the effect across child age to describe the 

motherhood effect for a larger population than just new mothers. 
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In the following, I employ the explanatory variance decomposition to disentangle the consequences of 

these changes for aggregate inequality. Figure 7 presents the results of the decomposition, showing four 

effects—within, between, compositional, pre-treatment—and their total16.  

The within- and between-group effects capture the distributional consequences of the behavioral 

changes shown in Figure 6. The within-group effect is negative, indicating that motherhood reduces within-

group inequality. This inequality-reducing effect, further, increased substantially between 1980 and 2000 

and has since remained constant. The between-group effect, by contrast, increased inequality up until 2010, 

but has since been declining again. Indeed, the 2020 estimate suggests that motherhood no longer increases 

earnings inequality between women in low-, medium-, and high-income households. 

The compositional effect captures the distributional consequences of changes in the share of mothers 

across economic strata. The effect—overall small—decreased inequality up until 2010 and has since been 

increasing inequality. Figure A3.2 in Appendix 3, which displays the share of mothers by economic strata 

over time, shows that motherhood up until 2010 was constant in high-income households but declined 

slightly in low- and medium-income households. Thus, fewer women in low- and medium-income 

households incurred income losses due to motherhood. Since around the 2008 financial crisis, however, 

motherhood in high-income households has started to decline as well, which reversed the effect. 

Finally, the pre-treatment effect captures the distributional consequences of changes in the impact of 

motherhood that are driven by changes in inequality prior to motherhood. This effect has increased 

inequality since the 1980s. The reason is that pre-childbirth inequality has declined (as shown in Figure 5), 

which lowered the inequality-reducing effect of motherhood. 

Adding up the four components, I find that—overall—the changing effect of motherhood on earnings 

since the 1980s has reduced women’s earnings inequality. In fact, the CV2 is about 1.6 percent lower in 

2020 than in 1980 due the changing motherhood effect17. The primary reason for it is that the inequality-

 
16 Table A3.1 in Appendix 3 provides results in table form. 
17 Details on the calculations can be found in Appendix 3. 
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decreasing effect of motherhood on within-group inequality is about 11.5 percent higher in 2020 than in 

1980 while the inequality-increasing effect on between-group inequality has not changed much.  

Instead of comparing the motherhood effect in each year to its effect in the 1980s, we can also compare the 

motherhood effect in each year to a zero-effect. That is, a counterfactual scenario in which motherhood has 

no effect on the mean and variance of women’s earnings. While this counterfactual scenario is unrealistic, 

it is a useful benchmark to understand the absolute effect of motherhood on inequality. Figure 8 displays 

the results of this decomposition18. The figure shows that, between 1980 and 1990, motherhood increased 

total inequality by increasing inequality between economic strata without affecting inequality within them. 

Between 1990 and 2000, however, motherhood begun to homogenize earnings within economic strata, 

which caused motherhood to reverse its effect on total inequality. In fact, the CV2 is about 5.5 percent lower 

in 2020 than if motherhood had no effect on earnings.  

CONCLUSION AND DISCUSSION 

In this paper, I introduce a novel approach that enables researchers to measure treatment effects on variance-

based inequality statistics and decompose the effects into within- and between-group components. The 

approach is based on the descriptive variance decomposition (e.g., Western and Bloome 2009), which it 

extends to an explanatory framework. It can be employed in observational research studying predictor 

effects and in experimental research studying treatment effects. The approach is more transparent and 

flexible than related approaches, such as Lemieux (2002), because variance regression (Harvey 1976) rather 

than a convoluted re-weighting procedure is employed to quantify the treatment effect on the within-group 

(residual) variance. The approach permits researchers to analyze inequality at a single timepoint using 

cross-sectional data as well as inequality trends over time using repeated cross-sectional or panel data. As 

treatment effects are defined at the individual level, the approach links individual-level effects to their 

 
18 The decomposition returns only a within- and between-group effect, as the level of pre-treatment inequality 

and the number of mothers in each group are kept at their actual levels. 
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consequences for group-level and total inequality (micro-to-macro link). As such, the approach bears the 

potential to not only advance our understanding of why but also of exactly how inequality is changing19.  

I apply the approach to examine the decline in women’s earnings inequality between 1980 and 2020. I 

demonstrate that changes in the effect of motherhood on earnings is one reason why inequality declined 

during this period. The CV2 is about 1.6 percent lower in 2020 due to changes in the motherhood effect 

since 1980 and about 5.5 percent lower in 2020 than if motherhood had no effect on earnings. The 

decomposition of this effect reveals that motherhood increases inequality between economic strata but 

reduces inequality within them. Moreover, the within-group effect increased between 1990 and 2000 and 

is substantially larger than the between-group effect. This result highlights the risk of drawing misleading 

conclusions when inequality researchers base their analyses solely on mean differences between groups. 

I further highlight that careful attention must be paid to the basic axioms of inequality measurement 

when decomposing the variance into within- and between-group components. Previous applications of the 

variance decomposition approach decompose the variance of log-income rather than the variance of 

income. The variance of logarithms, however, is not additively decomposable into within- and between 

group components because it does not respect the Pigou-Dalton principle of transfers (Cowell 1988, 2011; 

Foster and Ok 1999). I demonstrate that this issue can be addressed—either by switching to a latent utility 

interpretation or by using the squared coefficient of variation instead of the variance of logarithms. 

With this paper, I provide the R library “ineqx” to facilitate research using the variance decomposition 

approach. The library implements both descriptive and explanatory variance decomposition. The 

descriptive variance decomposition can be applied to a wide range of questions central to understanding 

dimensions of inequality, such as “Is there more inequality within races, genders, or economic strata or 

more between them?” and “Is the inequality within and between these groups changing over time?”. The 

 
19 Future research is needed to firmly establish the explanatory variance decomposition approach. First, it should 

be examined how the standard errors from variance regression can be translated into uncertainty estimates for the 

decomposition components. Second, the approach should be generalized from dichotomous to categorical treatment 

variables. Lastly, the approach could be extended to other decomposable inequality statistics, such as the Gini 

coefficient or Theil index. 
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explanatory variance decomposition approach can be employed to ask questions, such as “What is the 

causal effect of college on total inequality and on inequality within and between these groups?” and “To 

what extent do changes in the effect of college over time simply reflect changes in pre-college inequality 

and changes in group composition?”. The library allows to estimate and decompose such effects on 

inequality with a single command but also gives the possibility to draw on outside estimators. Further, the 

library makes it possible to decompose inequality at a single timepoint (absolute decomposition) or relative 

to a reference level (relative decomposition). The reference level can be a point in time (e.g., 1980) or a 

counterfactual level of inequality or effect of treatment (e.g., motherhood effect on the mean and variance 

is zero). With the counterfactual approach, questions, such as “What would the effect of higher education 

be if there was no pre-college inequality?” or “How would women’s earnings inequality change if there 

was no effect of motherhood on women’s earnings?”, can be analyzed.  

To conclude, the proposed explanatory variance decomposition provides researchers with a novel 

approach to measuring the distributional consequences of group heterogeneity in treatment effect analyses. 

The method considers heterogeneity in the distribution and effect of treatment across groups, heterogeneity 

of treatment within groups, and heterogeneity in pre-treatment inequality. By defining treatment effects at 

the individual level, measuring them at the group level, and quantifying their consequences at the aggregate 

level, the approach negotiates the impossibility of drawing causal inferences at the individual and aggregate 

level (Xie 2013).   
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CHAPTER 2 

A MULTILEVEL MODEL FOR COALITION GOVERNMENTS: 

UNCOVERING DEPENDENCIES WITHIN AND BETWEEN GOVERNMENTS  

DUE TO PARTIES 

 

ABSTRACT 

Coalition research increasingly focuses on party-level explanations of coalition outcomes. This work, 

however, ignores the complex multilevel structure between parties and governments: Many parties become 

nested in multiple governments over time, and governments are often nested in coalitions of multiple 

parties. In this paper, I show that this crisscrossing structure (i) induces dependencies among observations 

that inflate both Type-I and Type-II error rates if ignored, and (ii) reflects an inherent aggregation problem 

in party-level explanations. I then advance a novel multilevel model to account for the dependencies among 

observations and explicitly model the aggregation of party effects to the government level. I demonstrate 

the model’s ability to better integrate theoretical expectations into empirical models with an application to 

coalition government survival as predicted by parties’ financial dependencies. The results show that the 

more parties’ financial resources comprise of member contributions, the higher the termination hazard of 

governments including those parties.  
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INTRODUCTION 

The majority of advanced industrial democracies are parliamentary systems in which coalition governments 

are the norm. Accordingly, the study of the formation, governance, and termination of coalition 

governments is a central focus of comparative scholarship. A vast body of literature has established that 

such outcomes depend on (i) critical events, such as economic recessions, (ii) systemic properties at the 

country level, such as electoral institutions, and (iii) structural attributes at the government and parliament 

level, such as ideological heterogeneity or minimal winningness (Strøm, Müller, and Bergman 2008). 

In recent years, coalition research has directed attention to party-level explanations of coalition 

outcomes (Giannetti and Benoit 2009). Efforts to redress the lack of large-scale comparative data on party 

organization20 have led to a rise of empirical contributions (Bäck 2008; Bäck, Debus, and Dumont 2011; 

Ceron 2016; Druckman 1996; Greene 2017; Martínez-Cantó and Bergmann 2019; Martínez-Gallardo 2010; 

Saalfeld 2009). These studies, however, ignore the complex nonstandard multilevel structure between 

parties and governments. As Figure 1 shows, in addition to their nesting in countries, parties often become 

nested in multiple governments over time, and governments are often nested in multiple parties (i.e., are 

coalition governments). Acknowledging this crisscrossing relationship between parties and governments is 

key to studying party effects on government outcomes for two reasons.  

 

Figure 1: The multilevel structure of coalition governments in Israel 
 

 
 

 
20 New data collection efforts include the Political Party Database Project (Poguntke, Scarrow, and Webb 2017), 

ParlGov (Döring and Manow 2016), the Integrated Party Organization dataset (Giger and Schumacher 2015), and the 

Party Facts Project (Bederke, Döring, and Regel 2020). 
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First, from a statistical perspective, the multilevel structure implies dependencies among observations. 

While dependencies arising from the clustering within countries have been considered by previous research, 

dependencies that arise from the clustering within parties are ignored in all existing empirical analyses. 

These dependencies manifest in substantial correlations among outcomes of governments containing the 

same parties. A conducted simulation study shows that party-level dependencies affect regression 

coefficients and standard errors not only at the party level but also at the government, and country level. 

Even though no effect was specified in the simulation, regression coefficients were significant 20 to 60 

percent of the time depending on outcome and level of covariate (false positive rate). It is, therefore, crucial 

to model the multilevel structure to not primarily capture spurious effects. 

Second, from a theoretical perspective, the multilevel structure reflects interdependencies of political 

processes in the parliamentary arena. The outcomes of coalition governments depend on all constituent 

parties and on the interdependencies among them. Consequently, the interplay of coalition parties in their 

joint effect on the government must be considered. Analyzing parties’ joint effect constitutes cross-level 

inference as the effects of parties are aggregated to the government level. Multilevel analysis provides a 

suitable framework to model and test theories on how this aggregation process depends on the features and 

the configuration of coalition parties. While emphasized in theoretical work (Cross and Katz 2013; Lupia 

and Strøm 1995; Müller and Strøm 1999; Strøm 1990), the interplay of intra-party and inter-party politics 

is not properly modeled in empirical research on coalition government outcomes. 

In this paper, I propose a new statistical technique to represent the complex multilevel structure of 

coalition governments, which is based on the multiple membership multilevel model (MMMM) (Goldstein 

2011). The proposed model makes explicit that many parties are members of several governments over time 

and that many governments are multiparty coalitions. This is accomplished by including effects of parties 

in all governments in which they have participated and modeling the total party effect on a government as 

the aggregated effect of all parties within that coalition. In this way, dependencies within and across 

governments that originate at the party level are considered.  
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The proposed technique further allows to consider interdependencies among coalition parties in their 

effect on government outcomes. This is accomplished by endogenizing the weights of the MMMM so that 

the importance of parties in their effect on governments may depend on their relationship to each other 

(e.g., balance of power). The approach relaxes the implicit assumption of conventional single-level models 

(SLMs) that party weights are fixed within and across governments. In doing so, the MMMM opens up 

opportunities to model and test theories on the interplay of parties in their collective impact on government 

outcomes, which are impossible to test with SLMs.  

I illustrate the importance of recognizing the multilevel structure of coalition government outcomes by 

simulation and with an empirical application. In the simulation study, I use real variables from widely 

employed datasets and manipulate their effect on simulated outcomes (linear and survival) to assess the 

consequences of party-level clustering and interdependencies for recovering the true effects. The results 

show that the proposed generalized MMMM recovers the true regression coefficients and standard errors 

while conventional SLMs do not. 

I demonstrate the model’s ability to better integrate theoretical expectations into empirical models with 

an application to coalition government survival as predicted by parties’ financial dependency on their 

members. The results indicate that (i) the more a party’s financial resources comprise of contributions from 

its members, the higher the termination hazard of a government including this party, and that (ii) this effect 

is contingent upon the power balance in the coalition. 

While developed to study coalition outcomes, the proposed method has wide applicability to cases 

characterized by similar interdependence structures, such as data on multi-party wars, treaties, and 

international organizations. With this paper, I provide the R package ‘rmm’ available on CRAN to estimate 

the generalized MMMM for a variety of outcomes (linear, logit, conditional logit, Cox, Weibull) in a user-

friendly way. 
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THE MULTILEVEL STRUCTURE OF COALITION GOVERNMENT DATA 

Coalition government data exhibit a complex multilevel structure that induces dependencies among 

observations. First, governments are nested in countries. Since each government is nested in a single 

country, hierarchical multilevel modeling (termed shared frailty modeling in survival analysis) can be used 

to account for this hierarchical multilevel structure (Goldstein 2011). The second structure concerns the 

relationship between governments and parties. This relationship is not hierarchical: parties are members of 

no, one, or several governments over time and, vice versa, many governments are multiparty coalitions. As 

shown in Figure 1, Israel’s labor party, HaAvoda, was a member of all three governments between 2003 

and 2011, each of which was a coalition government. This crisscrossing data structure can be taken into 

account with the multiple membership multilevel model (MMMM) (Goldstein 2011). 

The MMMM was developed in educational research to accommodate that the hierarchical nesting of 

students in schools is broken up for mobile students who change schools over time (Browne, Goldstein, 

and Rasbash 2001; Goldstein, Burgess, and McConnell 2007; Leckie 2009). However, while in this 

application only a small fraction of students is mobile, in coalition government data, the multiple 

membership structure is the rule rather than the exception. Figure 2 shows the distribution of government 

participations in the Woldendorp, Keman and Budge dataset (2000). In these data, parties participate in 7.2 

coalition governments on average since WWII. However, the distribution is right-skewed with some parties 

being part of over 40 governments, such as the Italian Christian democrats. 

In linear regression, ignoring dependencies among observations will lead to downward-biased standard 

errors while regression coefficients will be unaffected. In nonlinear models, such as logistic and survival 

models, both regression coefficients and standard errors will be downward-biased. That is, similarities 

among observations affect model parameters even in the absence of omitted variable bias (i.e., dependencies 

are uncorrelated with the covariates in the model) (Box-Steffensmeier and Jones 2004, 141–54).  

I conducted a simulation study to assess the consequences of ignoring the complex multilevel structure 

of coalition government outcomes. To assess the consequences in a realistic setting, I use covariates from 
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datasets widely employed in the literature and only simulate their effect on synthetic (linear and survival) 

outcomes. The results are presented in Appendix A3 and show that the bias is pronounced, both Type-I and 

Type-II error rates are affected, and that robust standard errors do not redress the problem. Even though no 

effect was specified, the regression coefficients of a model ignoring dependencies among observations due 

to parties were significant 20–60 percent of the time depending on outcome and level of covariate. These 

results affect not only studies examining party effects but all studies examining coalition government 

outcomes because party-level dependencies affect parameter estimates at the party, government, and 

country level. Consequently, it is crucial to model this multilevel structure in order not to primarily capture 

spurious effects. The bias is likely also pronounced in other fields of political science in which multiple 

membership structures are frequently encountered, such as multiparty wars, treaties, and international 

organizations. 

Previous research has employed two strategies to overcome rather than incorporate the multilevel 

structure – disaggregating government outcomes to the party level or aggregating party features to the 

government level. Both strategies are problematic. The disaggregation strategy assigns coalition outcomes 

to all parties in the coalition and thereby treats the outcomes as independent realizations of each coalition 

party. This approach thus ignores interdependences among coalition partners that may have led to the 

observed outcome. It also ignores dependencies of government outcomes containing the same parties. 

Moreover, the approach induces Type-I error because data are artificially multiplied. A three-way coalition, 

for instance, generates three observations in the dataset even though only one outcome is observed, inflating 

the sample size on which standard error estimates are based. Finally, the estimated effect sizes are often 

misinterpreted. As I show in the simulation study in Appendix A3, regression coefficients estimated at the 

party level should not be interpreted as government-level effects. 

Aggregating party features to the government level recognizes that government outcomes depend on 

all constituent parties. However, while aggregating party features accounts for observed dependencies, 

similarity among observations that result from unobserved causes are still ignored with this approach. 
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Moreover, by imposing a fixed aggregation function, such as the arithmetic mean, the aggregation strategy 

also precludes analyzing the interdependencies of parties in their effect on government outcomes. Finally, 

owing to defaults in popular statistical programs such as Stata, it is common practice to take the mean of 

party features over available information and thus to ignore missingness data at the party level. For instance, 

in a three-way coalition with missing information on one party, Stata’s mean function will calculate the 

mean over the features of the available two parties. Research on imputation demonstrates that in the 

presence of nonrandom missingness and small groups, this strategy induces bias and almost any imputation 

strategy outperforms listwise deletion (Newman and Sin 2009). Such coding choices are often obscured to 

the reader (and sometimes the researcher) because the party level is not explicitly modeled.  

The following model proposal produces correct standard errors, allows for explicit theorization, and 

makes coding decisions more transparent, which expose missingness or ad-hoc aggregation procedures. 

 

Figure 2: The distribution of government participations in the WKB dataset 

  



 

 

54 

 

 

MODELING THE MULTILEVEL STRUCTURE 

Let yg = [y1
g
, … , yI

g
] be a coalition government outcome, where subscript i = 1,… , I indexes governments 

and superscript g indicates that the outcome is located at the government level. I propose to model this 

outcome in terms of a government-level effect θi
g
, a country-level effect θc(i)

c , and an aggregated party-

level effect θi
p

 to recognize the three levels at which explanations of coalition government outcomes 

originate: 

𝑦i
g
= θi

g
+ θc(i)

c + θi
p

 (1) 

To simplify the exposition, I propose the generalized MMMM as a linear random intercept model. 

However, the model structure can be implemented for a large class of models, including generalized linear 

models and survival models, and can be extended to accommodate random slopes. 

The government-level effect 

The government-level effect θi
g
 in equation (1) is modeled in terms of a systematic component (𝛃𝐠 ∙ 𝐱i

𝐠
) to 

represent the effect of observed covariates at the government level and a random component (uG) that 

captures the joint impact of unobserved government-level effects: 

θi
g
= 𝛃𝐠 ∙ 𝐱i

𝐠
+ ui

g
 

ui
g
~N(0,σug

2 ), 
(2) 

where 𝛃𝐠 ∙ 𝐱i
𝐠
 is the dot product of 𝛃𝐠 = [β1

g
, … , βG

g
] and 𝐱i

𝐠
= [1, xi1

g
, … , xiG

g
], and ui

g
 at this level is an error 

term, which is assumed to be normally distributed with a mean of zero, a constant variance of σug
2 , and zero 

covariance.  

The country-level effect 

The country-level effect θc(i)
c  in equation (1) models the hierarchical relationship between governments and 

countries in which each government i is associated with one country j. That is, subscript j = 1,… , J indexes 

countries and the indexing function c(i) returns the country j to which government i belongs. The country-

level effect is also modeled in terms of a systematic and a random component: 
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θj
c = 𝛃𝐜 ∙ 𝐱j

𝐜 + uj
c 

uj
c~N(0, σuc

2 ),  
(3) 

where 𝛃𝐜 ∙ 𝐱j
𝐜 is defined analogously to the above and uj

c captures the joint impact of unobserved country-

level effects. Including the same random component in all governments of the same country allows coalition 

governments in the same country to be more similar after conditioning on observed variables. The random 

components are assumed to be normally distributed with a mean of zero, a constant variance of σuc
2 , and 

zero covariance. The variance measures heterogeneity at the country-level due to unobserved country-level 

effects.  

The party-level effect 

The aggregated party-level effect θi
p

 in equation (1) models the relationship between parties and 

governments. It is a weighted sum of the effect of each party k in the set of parties that constitute 

government i. That is, subscript k = 1,… , K indexes parties and the indexing function p(i) returns all parties 

that participate in government i. The individual party effects are determined by a systematic and a random 

component and then aggregated by calculating their weighted sum with weights 0 ≤ wik ≤ 1: 

θi
p
= ∑ wik(𝛃

𝐩 ∙ 𝐱ik
𝐩
+ uik

p
)

k∈p(i)

= 𝛃𝐩 ∑ wik𝐱ik
𝐩

k∈p(i)⏟          
systematic component

+ ∑ wikuik
p

k∈p(i)⏟        
random component

 

where uk
P~N(0,σup

2 ) 

(4) 

and where 𝛃𝐩 ∙ 𝐱ik
𝐩

 is defined analogously to the above and uik
p

 captures the joint impact of unobserved 

party-level effects21. Including the same random component in all governments a party participated allows 

coalition governments that contain the same party to be more similar after conditioning on observed 

variables. The random components are assumed to be normally distributed with a mean of zero, a constant 

 
21 If we assume that unobserved party-level effects are constant across parties’ government participations, parties 

have one random component: uk
p
. If we assume that unobserved party-level effects change across parties’ government 

participations, parties have as many random components as participations in government: uik
p

 (see Appendix A5). 
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variance of σup
2 , and zero covariance. The variance measures heterogeneity at the party-level due to 

unobserved party-level effects.  

In contrast to the conventional MMMM, which aggregates only the random component, I propose to 

include both systematic and random component in the aggregation function in equation (4)22. Including the 

systematic component (i.e., observed party-level variables) in the aggregation function has two advantages. 

First, researchers incorporate the party level more explicitly in their analysis because the proposed model 

requires data at the party level. In doing so, both modeling choices and data quality issues become more 

transparent than when modeling aggregated data. Second, making the aggregation of the systematic 

component a modeling choice allows researchers to examine the interplay of parties in their collective 

impact on coalition government outcomes. This is accomplished by endogenizing the weights—an issue to 

which I turn next. 

ENDOGENIZING THE WEIGHT FUNCTION TO MODEL INTERDEPENDENCIES 

Prior research studying party effects often calculates the arithmetic mean of features of coalition parties to 

model the party effect on coalition governments  (e.g., Bäck 2008; Druckman 1996; Greene 2017). In 

equation (4), this is equivalent to wij = 1 ni⁄  with ni being the number of parties in coalition i. This 

modeling choice tacitly assumes that (i) the weights of coalition parties are identical and (ii) the sum of 

weights is constant across governments. However, not only is it an empirical question whether these 

assumptions hold, but also theoretical work on the interplay of intra- and inter-party politics offers reasons 

as to when and why these assumptions will be violated. For instance, violating (i), Gamson (1961) argues 

that parties’ share of government portfolios should be proportional to their legislative seat share; violating 

(ii), Tsebelis (2002) argues that party effects should be more important in ideologically heterogenous 

coalitions as intra- and inter-party conflicts amplify each other. 

 
22 In equation (4), the same weights are used to aggregate systematic and random components. However, the 

model is readily extended to allow researchers to specify different weights for different covariates as well as the 

random component. The model can also be extended to include opposition parties (see Appendix A3). 
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To relax the two assumptions, I propose to model party weights as a nonlinear regression of unobserved 

w on observed explanatory variables 𝐱𝐰 instead of assigning fixed weights to each party. I suggest the 

following general form for the weight regression function: 

wik =
1

ni
exp(−{𝛃𝐰∙𝐱ik

𝐰 })
 

subject to ∑ ∑ wikki = N 

(6) 

where 𝛃𝐰 ∙ 𝐱ik
𝐰  is defined analogously to the above, ni is the number of parties in coalition i, and N equals 

the total number of observations at the party level. 

The weight regression coefficients 𝛃𝐰 measure the effect of explanatory variables 𝐱𝐰 on a party’s 

weight in the aggregated party-level effect θp. In contrast to 𝛃𝐩, which describe structural effects of 

aggregated party-level covariates on government outcomes, 𝛃𝐰 describe how party-level covariates ∑w𝐱𝐩 

and the random component ∑wup should be measured at the government level.  

If weight variables have no impact on the aggregation process (𝛃𝐰 = 𝟎), the weights reduce to w =

1 n⁄  (mean aggregation) and assumptions (i) and (ii) hold. If 𝛃𝐰 ≷ 𝟎, the weights reveal a more complex 

interplay of parties in their effect on governments. That is, weights will deviate from w = 1 n⁄  and are no 

longer constant within and/or between governments. Instead, they depend on depend on attributes at the 

party, government, or country level.  

Weight variables at the party level vary within governments and thus allow examining whether some 

parties are more important than others in their effect on the coalition outcome. Weight variables at the 

government or country level vary between governments and thus allow examining whether party effects 

are more important in some governments (or countries) than in others. Such cross-level interactions make 

it possible to examine the interplay of intra- and inter-party processes.  

The functional form wik =
1

ni
exp(−{𝛃𝐰∙𝐱ik

𝐰 })
 constrains the weights between 0 and 1 and the sum of weights 

within governments to, at most, ni. That is, 0 ≤ wik ≤ 1 and ∀i:∑ wik ≤ nik . In governments in which all 

wik = 0 and, accordingly, ∑ wikk∈p(i) = 0, party effects do not matter in determining the outcome. In 
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governments in which all wik = 1 ni⁄  and, accordingly, ∑ wikk∈p(i) = 1, the aggregated party effect is the 

arithmetic mean of the effect of each government party. In such governments, the outcome changes by 𝛃𝐰 

if all coalition parties jointly increase 𝐱𝐢𝐤
𝐰  by one unit. Such an effect is contextual in that it requires all 

coalition parties to change to for the effect to be realized. In governments in which all wij = 1 and, 

accordingly, ∑ wikk = ni, the aggregated party effect is the unweighted sum of the effect of each 

government party. Such an effect is autonomous in that increasing 𝐱ik
𝐰  of one party alone by one unit impacts 

the outcome by 𝛃𝐰 and, therefore, each additional coalition party will increase the total impact of party 

effects on government outcomes.  

To provide identification and prevent a rescaling of the party effects themselves, I constrain the sum of 

all weights to equal the total number of governments N, i.e. ∑ ∑ wikki = N. Mean aggregation also 

constrains the sum of all weights to N by constraining the weights to sum to 1 in each government. In 

contrast to the constraint imposed by mean aggregation, this constraint allows some governments to have 

sums larger than 1 and some governments to have sums smaller than 1. However, it does not change the 

overall sum of weights, which still equals N.   

Whether a covariate should enter the model as weight or structural variable must be guided by theory. 

This is no different from the conventional method of selecting weight variables when preparing the dataset. 

However, the generalized MMMM makes this modeling choice more transparent and enables researchers 

to confront their choices with data rather than to impose them unchecked. The simulation study below 

further shows that the generalized MMMM can safeguard against some types of model misspecification. 

Of course, weights can remain unmodeled if there is no reason to suspect that they vary between parties, 

governments, or countries. 

Two examples from government survival 

1. Weight variable varies between parties. Let xp describe parties’ internal cohesion, xw indicate if they 

hold the prime ministership, and the outcome be government survival. If β
w = 0, government survival 
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depends on the cohesion of the prime minister’s party as much as the cohesion of the coalition partners. 

Accordingly, the effect of party cohesion is best described by the average cohesion among the coalition 

parties. In contrast, if β
w ≷ 0, government survival depends on the cohesion of the prime minister’s 

party more (less) than the cohesion of the coalition partners. 

2. Weight variable varies between governments. Let xP describe parties’ internal cohesion, xw describe 

coalitions’ ideological heterogeneity, and the outcome be government survival. If β
w ≷ 0, the effect of 

party cohesion on government survival is more (less) important in ideologically dispersed coalitions. 

Such cross-level interactions allow researchers to examine how intra- and inter-party processes affect 

each other. Assume the model estimates that ∑ wikk ≈ ni for ideologically dispersed coalitions. In that 

case, the effect of party cohesion is best described by the sum of the effect of each coalition party.  

In conclusion, the generalized MMMM makes three contributions. First, it accounts for dependencies 

among observations due to parties by including party-level random effects. Second, it incorporates the 

aggregation of party effects into the model so that the aggregation function can be theoretically grounded. 

I suggested a functional form, but other forms can also be implemented. Finally, it enables researchers to 

test theories on the interplay of parties in their collective impact on government outcomes by making it 

possible to endogenize the aggregation function. 

ESTIMATION 

Estimation of model parameters is done using Bayesian Markov chain Monte Carlo (MCMC) as the 

likelihood function of the generalized MMMM has no closed-form solution and because Bayesian 

estimation of multilevel models offers several advantages (see Appendix A1). Accordingly, proper priors 

must be specified across all parameters to define the posterior distribution, which I discuss in more detail 

in the empirical application below. 

The model can be fitted using the rmm R package, which is provided with this paper and available on 

CRAN. This package offers a user-friendly interface to estimate the generalized MMMM in JAGS 
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(Plummer 2015; v.4.3) from within R for a variety of models (linear, logit, conditional logit, Cox, Weibull). 

It allows users to model hierarchical and multiple membership multilevel structures and develop their own 

weight function(s). 

MODEL PERFORMANCE 

The simulation study in Appendix A3 also examines parameter bias and Type-I and Type-II error rates of 

the generalized MMMM. Frequentist properties of Bayesian models are regularly studied in objective 

Bayesian statistics (Bayarri and Berger 2004; Berger 2006). The Type-I error rate of Bayesian models, for 

instance, is not known a priori (as compared to the frequentist promise of 5% over the iterations of the 

simulation when setting the nominal 𝛼 to 0.05) (Gelman and Tuerlinckx 2000). Bayesian models, however, 

often have good frequentist properties and it is, therefore, useful to study them. The results show that 

MMMM estimates both regression coefficients and standard deviations at all three levels without bias. 

RELATIONSHIP TO ALBARELLO (2024) 

Recently, Albarello (2024) prosed a special case of the generalized MMMM: 

yi
g
= 𝛃𝐠 ∙ 𝐱i

𝐠
+ 𝟏 ∙ ∑

exp(𝛃𝐰∙𝐱ik
𝐰 )

∑exp(𝛃𝐰∙𝐱ik
𝐰 )
𝐱ik
𝐩

k∈p(i) + ui
g
  

This model has two major disadvantages. First, it does not differentiate between weight and structural 

regression coefficients since 𝛃𝐩 = 𝟏. Accordingly, the model is a measurement model and can be only 

applied to cases where the outcome yg and the party-level variable 𝐱𝐩 are the same. In their application, for 

instance, the model measures the extent to which a coalition’s policy positions yg is the average of the 

coalition parties’ policy positions xp weighted by their legislative seat share xw. In contrast, the generalized 

MMMM differentiates between measurement (𝛃𝐰) and structural effects (𝛃𝐩) but allows researchers to 

specify offset parameters if so desired (e.g., 𝛃𝐩 = 𝟏).  

Second, and most importantly, the model ignores the dependencies among observations due to parties 

(apart from the modeled covariates) as it omits party-level random components (up). Accordingly, 

regression coefficients and standard deviations suffer from a similar bias as those of conventional SLMs. 
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APPLICATION: PARTIES’ FINANCIAL DEPENDENCY ON THEIR MEMBERS AND THE 

INTERDEPENDENCE STRUCTURE OF GOVERNMENT SURVIVAL 

To illustrate the utility of the generalized MMMM and the importance of modeling the crisscrossing 

relationship between parties and government, I examine the effect of parties’ financial dependency on their 

members on the survival of coalition governments.  

Theoretical considerations 

I hypothesize that the more a party’s financial resources comprise of contributions from its members, the 

higher the termination hazard of a government including this party. The reason is that the less financial 

capital a party receives from sources other than its members, the more it depends on them. Most members 

cannot be rewarded with office spoils but are reimbursed with promises about future public policy. Such 

promises confine party leaders who need to build and maintain inter-party agreement and, consequently, 

increase the risk of political gridlock (Müller and Strøm 1999; Strøm 1990).  

Regarding the aggregation of party effects, I examine whether Gamson’s law (1961) extends to 

government survival by testing whether the impact of parties on government survival is proportional to 

their legislative seat share. Allowing party weights to depend on their seat share relaxes the first of the two 

tacit assumptions made when mean-aggregating party effects—that all coalition parties are equally 

important. Furthermore, I hypothesize that party effects are more important in ideologically heterogenous 

coalitions because intra- and inter-party conflicts amplify each other (Tsebelis 2002). Allowing the sum of 

weights to depend on the coalition’s ideological heterogeneity relaxes the second tacit assumption of mean 

aggregation— that party effects are equally important across governments. 

Data and Measurement  

The analysis is based on the Woldendorp, Keman and Budge dataset (2000) to source start and end date of 

each government, reason for termination, government parties, and their distribution of seats in parliament, 

on the Comparative Manifestos Project (Volkens et al. 2016) to source political positions of the government 



 

 

62 

 

 

parties, and on Round 1a of the Political Party Database (Scarrow, Poguntke, and Webb 2017) to 

operationalize parties’ financial dependency on their rank-and-file.  

Government duration is measured as the time between the investiture of a government and new 

elections. Due to the focus on political gridlock, I differentiate terminations by their underlying motivation 

(escape gridlock / seize opportunity) rather than by the employed constitutional mechanism (nonelectoral 

replacements / early elections). To do so, I only consider terminations following some form of conflict and 

more than one year before the official end of term as events and censor other terminations. 

Parties’ financial dependency is measured by the share of financial contributions from party members 

in the total funding of parties, which the Political Party Database obtained from parties’ financial reports.  

Parties’ relative seat share in government is measured as 𝑆𝑖𝑗 = (
𝑠𝑒𝑎𝑡𝑠𝑖𝑗

∑ 𝑠𝑒𝑎𝑡𝑠𝑖𝑗𝑗
−

1

𝑁𝑖
) (

𝑁𝑖

𝑁𝑖−1
), where 𝑠𝑒𝑎𝑡𝑠𝑖𝑗 

is the seat share of party 𝑗 in government 𝑖, and 𝑁𝑖 is the number of government parties. 𝑆𝑖𝑗 = 0 if 𝑗 has as 

many seats as the other parties, 𝑆𝑖𝑗 = 1 if 𝑗 holds all seats, and 𝑆 = −1 if 𝑗 holds no seats within the 

coalition. 

Following Warwick (1994), I compute the standard deviation of coalition parties’ right-left score to 

measure governments’ ideological heterogeneity. Benoit and Laver (2007) point to the incomparability of 

the left-right score across countries and time, which is why I divide the coalition’s standard deviation by 

the left-right standard deviation of all parties in the parliament that year. The measure is therefore relative 

to the ideological distribution at time and place. 

 I control for whether the government is in the majority in parliament, a minimal winning coalition, and 

country fixed effects to eliminate all unobserved time-constant country confounds. The final dataset 

comprises 401 governments from 18 countries (Australia, Austria, Belgium, Czech Republic, Denmark, 

France, Germany, Hungary, Ireland, Israel, Italy, Netherlands, Norway, Poland, Portugal, Spain, Sweden, 

United Kingdom) between 1944 and 2014, and a total of 194 parties. Continuous variables are standardized, 

dividing them by two times their standard deviation, so that the regression coefficients are comparable to 
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those of binary predictors (Gelman 2008). I refer to Appendix A4 for more details on theoretical 

considerations, data, and measurement. 

Model specification 

The generalized MMMM as Weibull accelerated failure time model is parameterized as follows: 

log(ti
g
) = 𝛃𝐠 ∙ 𝐱i

𝐠
+ ui

g
+ 𝛃𝐜 ∙ 𝐱c(i)

𝐜 + uc(i)
c + ∑

1

ni
exp(−{𝛃𝐰∙𝐱ik

𝐰 })
(𝛃𝐩 ∙ 𝐱ik

𝐩
+ uik

p
)k∈p(i)   

where the dependent variable ti
g
 is time until government termination, the systematic components are 

defined as above, ui
g
~Gumbel (0,

1

ρ
) and thus σug

2 =
π2

6ρ2
, ρ is the shape parameter of the Weibull 

distribution, uj
c~N(0,σuc

2 ), uk
P~N(0,σup

2 ), and s.t. ∑ ∑
1

ni
exp(−{𝛃𝐰∙𝐱ik

𝐰 })ki = I.  

Parameters to be estimated are the vectors of regression coefficients 𝛃 = [𝛃𝐠, 𝛃𝐜, 𝛃𝐩, 𝛃𝐰], the variances 

of the random terms 𝛔𝐮
𝟐 = [σup

2 ,σuc
2 ], and the shape parameter 𝜌. I use weakly informative priors for 

computational stability: normal distributions for the regression coefficients: 𝛃~N(0,0.001), scaled half-t 

distributions for the standard deviations of the random components: 𝛔𝐔~Half-T(S = 25, df = 1) (Gelman 

2006), and an exponential distribution for the shape parameter: ρ~exp(0.001).  

Collecting 𝚯 = [𝛃, 𝛔𝐮
𝟐, 𝜌] and 𝐱 = [𝐱𝐠, 𝐱𝐜, 𝐱𝐩], I obtain the posterior distribution p(𝚯|t, 𝐱) using 

Bayesian MCMC in JAGS. I specify 5 chains, a chain-length of 100,000 with a burn-in of 10,000. The 

MCMC diagnostics suggest that the chains successfully converged to the posterior distributions and 

robustness checks show that the results are not sensitive to competing prior settings. A detailed discussion 

of model estimation, convergence, and goodness-of-fit can be found in Appendix A4. 

Results 

The results are presented in three parts. First, I study the origin of variance in government survival by using 

the generalized MMMM to decompose the total variance in government survival into party, government, 

and country components. Next, I present the results of using the generalized MMMM to examine the effect 
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of parties’ financial dependency on their members. Finally, I demonstrate how estimated weight coefficients 

shed light on the interdependence structure of coalition governments.  

The origin of variance in government survival  

Table 3 presents the results of an intercept-only model that separates the total variance in government 

survival into party, government, and country components. Unsurprisingly, most variability in government 

survival is located at the government level. However, 34 percent of the variation originates from differences 

between governments at the party level, and 24 percent originates from differences between governments 

at the country level. Consequently, while it is standard in the literature to include country-level predictors, 

this result vindicates recent efforts to integrate party-level explanations into explanations of government 

survival. 

Table 3: The variance in government survival at each level 

 Variance 
Percent of total 

variance 

L
ev

el
 Party 0.811 (0.328) 29.8 

Government 1.319 (0.177) 48.5 

Country 0.589 (0.223) 21.7 

MMMM without covariates to estimate the variance at each level. 

Mode (standard deviation) of the posterior distribution. 

 

The effect of financial dependency 

Table 4 presents the regression results. Model 1 is an SLM estimated on party-level data (i.e., each row 

constitutes a party’s participation in government). All variables are significant because this approach 

drastically underestimates the standard error at all three levels. (In Appendix A3, I demonstrate by 

simulation that this strategy underestimates standard errors and that regression coefficients cannot be 

interpreted at the government level.) 
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Model 2 is an SLM estimated on government-level data, in which the share of contributions from party 

members in the total funding of parties has been aggregated using the arithmetic mean. The effect of parties’ 

financial dependency is nonsignificant despite a larger effect size because the standard error too is larger.  

Model 3 is an MMMM that accounts for the similarity of observations caused by parties repeatedly 

appearing in the dataset, but it also uses the arithmetic mean as aggregation function. The effect of parties’ 

financial dependency is considerably larger but remains nonsignificant because the MMMM estimates the 

actual uncertainty in the effect – roughly double of what the SLM estimates. 

Table 4: Regression results 

Level 
Variable 

type 
Variable 

(1) 

SLM at  

party level 

(2) 

SLM at  

gov level 

(3) 

MMMM 

with w=1/N 

(4) 

MMMM 

with w=f(Z) 

Party 

Structural  Financial dependency 
0.134† 

(0.0976) 

0.293 

(0.2429) 

0.376 

(0.4655) 

0.692* 

(0.4003) 

Weight  
Relative legislative 

seat share 
- - - 

8.617* 

(5.0884) 

Government  

Structural Majority  
-0.279* 

(0.1201) 

-0.385* 

(0.2154) 

-0.418* 

(0.2358) 

-0.388* 

(0.2397) 

Structural Minimum winning  
-0.897*** 

(0.1170) 

-0.843*** 

(0.2083) 

-0.888*** 

(0.2313) 

-0.903*** 

(0.2251) 

Weight 
Ideological 

heterogeneity 
- - - 

1.375 

(4.8609) 

Country  Structural Fixed effects yes yes yes yes 

N  

Parties 

Governments 

Countries 

1285 

 

 

401 

194 

401 

18 

194 

401 

18 

DIC 

Predictive 𝑅2 
  

9171 

0.039 

2806 

0.039 

2851 

0.060 

2812 

0.075 

All four models are estimated with Bayesian MCMC. Details on estimation can be found in Appendix A4. The MCMC 

diagnostics suggest that the chains successfully converged to the posterior distributions. The dependent variable is the 

hazard rate of government termination, and the reported estimates are the mean and standard deviation of the posterior 

distribution. I refer to the standard deviation of the posterior as the standard error and to the one-sided tail probability 

of the posterior as p-value. Note, however, that the standard deviation of the posterior is a more direct measure of 

uncertainty than the standard error, and the Bayesian analog to the frequentist p-value is a test of direction rather than 

existence (Marsman and Wagenmakers 2016). The results can be interpreted without this reference to the frequentist 

paradigm. I chose this framing so that the advantages of modeling the multilevel structure are not mistaken for 

advantages of a Bayesian approach. Continuous variables are standardized, dividing them by two times their standard 

deviation, so that the regression coefficients are comparable to those of binary predictors (Gelman 2008). ***p<0.001, 

**p<0.01, *p<0.05, †p<0.1. 

 

Model 4 is another MMMM that includes parties’ relative seat share and coalitions’ ideological 

heterogeneity as weight predictors. Instead of using a static function, the model allows the aggregation 
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process to depend on the coalition’s power balance and potential for conflict. The effect of parties’ financial 

dependency is two times as large as the effect in the SLM. Moreover, the standard error is smaller than in 

the MMMM using mean aggregation. Therefore, the effect of parties’ financial dependency has been 

suppressed by forcing the weights to be 1/N instead of letting them depend on the coalition’s 

interdependence structure.  

This result reinforces the conclusion from the simulation study that modeling the aggregation process 

is key to uncovering party effects when weights are not uniform within and across governments. The impact 

of parties’ financial dependency is considerable. The probability of reaching the 4-year mark decreases by 

about 13 percentage points per 10 percent of funding by members. This more than the difference in survival 

probability between minority and majority governments (10 percentage points).  

The simulation study also shows that regression coefficients and standard errors of variables at other 

levels are affected. This is visible, for instance, for the effect of minimal winningness, which is larger in the 

MMMM than in the SLM. 

The MMMM enjoys good model-fit and higher predictive power than the SLM. The reported predictive 

𝑅2 measures the proportion of explained variance by the linearly corrected prediction function, which 

quantifies the potential predictive power of survival models (Li and Wang 2019). This power is two times 

higher for the MMMM (𝑅𝑀4
2 = 0.08) than for the SLM (𝑅𝑀2

2 = 0.04). The deviance information criterion 

(DIC) indicates that modeling the aggregation process improves model-fit considerably. Like the AIC, the 

DIC is based on the trade-off between model-fit and complexity and allows comparing non-nested models. 

Smaller DICs indicate better model-fit and differences greater than 10 are considered significant 

(Spiegelhalter et al. 2002). The DIC of the MMMM including weight predictors is 39 points lower than the 

MMMM with mean aggregation. The DIC, however, is 6 points higher than the SLM. This is because the 

DIC favors models with a smaller number of parameters. Unbiased hypothesis tests, however, are worth 

the increase in complexity in my view. 
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The interdependence structure of government survival 

The results provide strong evidence that the balance of power in the coalition influences the degree to 

which a coalition party’s financial dependency impacts government survival. The financial dependency of 

a party with more seats relative to other coalitions partners is more important in the effect on government 

survival than the financial dependency of a party with fewer seats. Panel A of Figure 7 illustrates this 

relationship. Mean aggregation thus overestimates the impact of parties with fewer seats and underestimates 

the impact of parties with more seats, which is shown in Panel B of Figure 7. To give an example, in a 3-

party coalition with one party holding 60 percent (𝑆 = 0.4) of the coalition’s seat share and the other two 

each holding 20 percent (𝑆 = -0.2), the MMMM estimates the weights to be 𝑤 = (0.7,0.1,0.1). That is, 

the MMMM reveals that primarily the first party’s financial dependency impacts the coalition’s termination 

hazard. Mean aggregation, by contrast, assigns 𝑤 = (0. 3̅, 0. 3̅, 0. 3̅) without consulting the data, which is 

the source of effect suppression in model (2) and (3). Unequal seat distributions like in this example (𝑆 ≥

|0.4|) are very common; 59 percent of the coalitions fall into this category. 

The results do not provide evidence that parties’ financial dependency is more or less important in 

ideologically heterogenous coalitions. Panel C of Figure 7, however, shows that the importance of parties’ 

financial dependency nonetheless varies across governments. The sum of weights peak at 𝑆 = 0, which 

suggests that parties’ financial dependency matters most in coalitions with equal power distribution.   

Figure 7: Party weights as a function of their relative seat share in the coalition.  
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CONCLUSIONS 

Research on coalition governments increasingly directs attention to party-level explanations of coalition 

outcomes (Giannetti and Benoit 2009). This research, however, ignores the complex multilevel structure 

between parties and governments. In addition to their nesting in countries, parties often become nested in 

multiple governments over time and governments are often nested in coalitions of multiple parties.  

In this paper, I show that the crisscrossing relationship between parties and governments (i) implies 

dependencies among observations that need statistical control, and that it (ii) exposes interdependencies 

between parties in their effect on governments that need theorization. I then advance a new statistical 

method to address both issues. The proposed method represents the multilevel structure of coalition 

governments by modeling the total party effect on a government as the aggregated effect of all parties in 

the coalition and by including effects of parties in all governments in which they have participated.  

The approach is based on the multiple membership multilevel model (MMMM), which I generalize in 

two ways. First, while a standard MMMM only aggregates the random part of the model, the proposed 

model aggregates both fixed and random parts to provide a consistent aggregation of party effects to the 

government level. Second, I propose to endogenize the weights of an MMMM so that the weights of parties 

in their effect on a government are no longer fixed but can depend on interdependencies among coalition 

partners. With this paper, I provide the R package ‘rmm’ to estimate the generalized MMMM for a variety 

of outcomes (linear, logit, conditional logit, Cox, Weibull) in a user-friendly way. 

I illustrate the importance of modeling the multilevel structure by simulation and with an empirical 

application. The simulation demonstrates that the generalized MMMM recovers the correct regression 

coefficients and standard errors in the presence of party-level clustering and interdependencies and enjoys 

good model-fit and higher predictive accuracy than the conventional single-level model (SLM). The SLM, 

ignoring party-level clustering and interdependencies, by contrast, is biased.  

Ignoring party-level clustering leads to underestimated standard errors in linear regression and 

underestimated regression coefficients and standard errors in survival analysis. This behavior has 
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considerable consequences for hypothesis testing and a precise identification of causal effects. Both false 

positive rate and power are affected: On datasets widely employed in the literature, government-level 

regression coefficients were significant over 40 percent and party- and country-level regression coefficients 

were significant in over 60 percent of the time even though no effect was specified in the simulation. The 

power to detect effects went down by 20 percentage points for higher degrees of party-level clustering 

because the variance of the estimator surges. 

In survival analysis, the government-level regression coefficients were significant over 20 percent and 

party- and country-level regression coefficients were significant over 40 percent of the time even though 

no effect was specified. The power to detect effects went down by 25 percentage points for higher degrees 

of party-level clustering, owing to the downward bias in the regression coefficients and an increased 

variance of the estimator. 

Ignoring interdependencies in the aggregation process biases both regression coefficients and standard 

errors at all three levels both in linear regression and survival analysis. The bias is particularly consequential 

in survival analysis where it further decreases the model’s power.  Consequently, when interdependencies 

are present, modeling them is key to uncover effects that, otherwise, are suppressed. 

To summarize, the bias of ignoring party-level clustering and interdependencies is substantial and 

affects covariates at all three levels. Worse yet, the bias continues to grow as parties continue to accumulate 

government participations over time and their vote shares continue to decline, leading to larger coalitions 

(Drummond 2006). The simulation shows that available robust standard errors do not redress the problem. 

It is, therefore, key to model the dependencies within and across governments regardless the level of the 

covariates considered.  

In the empirical application, I employ the MMMM to examine the effect of a party’s financial 

dependency on their members on government survival. The results indicate that the more a party’s financial 

resources comprise of contributions from its members, the higher the termination hazard of a government 

including this party. This finding provides evidence for the idea that intra-party politics confines party 
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leaders who need to build and maintain inter-party agreement. The results also show that the financial 

dependency of parties with more seats relative to other coalitions partners is more important in the effect 

on government survival. Thus, the effect of a party’s financial dependency is contingent upon the power 

balance in the coalition. Owing to the downward bias in the regression coefficients, the effect of a party’s 

financial dependency is not detected using a SLM. Finally, the MMMM allows partitioning the variation in 

government survival into components at each level. While, unsurprisingly, most variance is located at the 

government level (42%), the results reveal more variance at the party level (35%) than at the country level 

(23%). This finding, therefore, vindicates efforts to integrate intra-party politics into explanations of 

government survival.  

In conclusion, this paper contributes to the literature on coalition governments by dissecting the 

analytical levels of explanations of coalition outcomes and the link between those levels. The paper also 

proposes a novel way to model the interdependence structure of political processes, not wholly unlike the 

spatial autoregressive model (SARM) (Juhl 2020). The difference is that the SARM models how parties 

affect each other’s outcomes while the MMMM models interdependences in the joint effect of parties on 

outcomes at a higher level. This feature makes it possible to test theoretical expectations on aggregation 

processes. Examples include the aggregation of player strategies in game-theoretic models (Lupia and 

Strøm 1995) and spatial theory (Laver and Shepsle 1996), or indices that aggregate party features to a higher 

level, such as power indices (Banzhaf 1964). Theoretical expectations on such processes can be tested with 

the MMMM by translating them into weight functions. 

The paper demonstrates what a multilevel approach can add to research on coalition governments. The 

proposed approach, however, has the potential to advance our understanding of other political research 

areas characterized by similar interdependence structures, such as multiparty wars, treaties, and 

international organizations.  
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CHAPTER 3 

SOCIOECONOMIC SEGREGATION IN ADOLESCENT FRIENDSHIP NETWORKS:  

A NETWORK ANALYSIS OF SOCIAL CLOSURE IN US HIGH SCHOOLS. 

 

ABSTRACT 

Adolescent friendship networks are characterized by low interaction across both socioeconomic and racial 

lines. Using data from the National Study of Adolescent Health and a new exponential random graph 

modeling approach, this study examines the degree, pattern, and determinants of socioeconomic segregation 

and its relationship to racial segregation in friendship networks in high school. The results show that 

friendship networks are overall less socioeconomically segregated than they are racially segregated. 

However, the exclusion of low-SES students from high-SES cliques is pronounced and, unlike racial 

segregation, unilateral rather than mutual: many friendship ties from low-SES students to high-SES peers 

are unreciprocated. The decomposition of determinants indicates that about half of the socioeconomic 

segregation in friendship networks can be attributed to differences in socioeconomic composition between 

schools. The other half is attributable to students’ friendship choices within schools and driven by stratified 

courses (about 13 percent) as well as racial and socioeconomic preferences (about 37 percent). In contrast, 

relational mechanisms like triadic closure – long assumed to amplify network segregation – have only minor 

effects on socioeconomic segregation. These results highlight that SES-integrated friendship networks in 

educational settings are difficult to achieve without also addressing racial segregation. Implications for 

policymakers and educators are discussed.  
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INTRODUCTION 

An extensive literature on social capital highlights how friendships not only promote psychological well-

being but also provide access to the human, cultural, and economic capital of peers.1 Recent research using 

sociometric network data indicates that peer resources impact life trajectories of adolescents with low 

socioeconomic status (SES). For low-SES youth, friendships that cross socioeconomic boundaries predict 

higher attainment in middle school (Lessard and Juvonen 2019) and high school (Chung 2020), and greater 

socioeconomic success later in life (Chetty et al. 2022a). For high-SES youth, in contrast, peer resources 

appear redundant with the resources provided by family and school, and ties to low-SES peers do not seem 

to affect socioeconomic outcomes (Chetty et al. 2022a; Chung 2020; Lessard and Juvonen 2019).2 Cross-

SES interaction, therefore, has the potential to increase upward mobility of disadvantaged youth without 

compromising the life-chances of their high-SES peers. 

This potential is constrained in the United States by socioeconomic segregation, separating adolescents 

not only physically into different neighborhoods and schools, but also socially into different friendship 

circles (Chetty et al. 2022b; Kao, Joyner, and Balistreri 2019; Malacarne 2017; McFarland et al. 2014; 

McMillan 2022; Mouw and Entwisle 2006; Smith, McPherson, and Smith-Lovin 2014; Zeng and Xie 2008). 

The effects of physical distance on limiting interaction across socioeconomic lines are intuitively obvious 

and well-documented (for an overview, see Mijs and Roe 2021). In contrast, the determinants of social 

distance are much less straightforward theoretically and the empirical data are far more difficult to acquire. 

As a result, the mechanisms underlying socioeconomic segregation in friendship networks are less well-

understood. Accordingly, this paper seeks a deeper understanding of socioeconomic segregation in 

friendship networks and the processes that create it.  

I focus on friendship networks in high school because high schools offer a more diverse socioeconomic 

composition than primary schools, middle schools, and universities (Chetty et al. 2022b; Kalogrides and 

Loeb 2013). Yet, despite greater contact opportunities between peers with different SES backgrounds, high 

school students are no more likely to form friendships across socioeconomic lines (Chetty et al. 2022b; 
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Malacarne 2017). The underlying puzzle motivating my research is: Why are high school students not 

forming cross-SES friendships despite these opportunities? The significance of cross-SES interaction in 

high school goes beyond opportunities, however. Early adolescence is the developmental period in which 

important group and identity formation processes unfold to shape life-long social identities (Cotterell 2007). 

The presence or absence of cross-SES interaction during this period will not only affect the socioeconomic 

attainment of disadvantaged youth but also shape future social and political divisions in society (Gidron 

and Hall 2020; Putnam 2016). Accordingly, interventions to promote social integration may strategically 

target high schools, but their effectiveness will depend on a better understanding of socioeconomic 

segregation in high school friendship networks.  

Two challenges stand in the way of progress. First, diverging results in the extant literature expose 

limitations in our understanding of the degree and patterns of socioeconomic segregation. For example, 

Chetty et al. (2022b) found greater socioeconomic segregation in high school friendship networks than prior 

studies (Kao et al. 2019; Malacarne 2017; McFarland et al. 2014; McMillan 2022; Mouw and Entwisle 

2006; Smith et al. 2014; Zeng and Xie 2008). This discrepancy may or may not reflect changing friendship 

patterns because data and measurement differences across studies make it difficult to compare results. More 

descriptive research in a single comprehensive framework is needed to better understand the degree and 

specific patterns of socioeconomic segregation and how it compares to other dimensions of segregation. 

Second and most importantly, we lack understanding of the determinants of socioeconomic segregation, 

especially within schools. Most racial and socioeconomic desegregation efforts to date, such as busing, 

zoning, and affirmative action, are designed to reduce segregation between schools. Chetty and colleagues 

(2022b), however, find that between-school segregation explains only half of the total socioeconomic 

segregation in friendship networks. The other half is determined by processes within schools, which Chetty 

and colleagues subsume under “friending bias” (i.e., apparent SES homophily). However, aside from SES 

homophily, several other processes can induce socioeconomic segregation. Prior research suggests that 

stratified settings (e.g., courses), homophily3 on correlates of SES (e.g., racial homophily), popularity 
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differences, and relational mechanisms (e.g., triadic closure) can also contribute to socioeconomic 

segregation within schools. Prior studies have focused on different potential determinants but omitted 

measures of alternatives that may confound their results. A comprehensive decomposition of determinants 

is therefore needed to disentangle their relative contributions. In particular, the extent to which racial 

homophily shapes socioeconomic segregation remains unclear. 

Given these limitations in prior research, the present study contributes to our understanding of 

socioeconomic segregation in high school friendship networks in two ways. First, the study offers a rich 

description of the degree and patterns of socioeconomic segregation and its relationship to racial 

segregation. Second, the study provides a comprehensive decomposition of the determinants of 

socioeconomic segregation. The decomposition not only splits segregation into within- and between-school 

components but also moves beyond friending bias as a singular concept to disentangle the contribution of 

multiple determinants within schools: 

• Neighborhood, course, and extracurricular activities that may be socioeconomically stratified and thus 

impose structural barriers to cross-SES interaction. 

• Student preferences, which can indicate both intentional (preferences regarding peers’ SES) and 

unintentional socioeconomic segregation (preferences regarding peers’ race or academic performance). 

• Relational mechanisms like triadic closure that reflect students’ tendency to base friendship choices on 

already existing friendship ties and thus may amplify existing tendencies.  

The study uses data on friendship networks in the National Study of Adolescent Health (Add Health). 

Add Health is a nationally representative sample of 7th to 12th graders across a wide range of school contexts 

that includes sociometric and sociodemographic data. The sociometric network data provide information 

both on exposure (attending the same school) and interaction (friendship), which is a key distinction 

between this study and work on socioeconomic segregation using compositional data (e.g., Owens, 

Reardon, and Jencks 2016) or egocentric network data (e.g., J. A. Smith et al. 2014). The sociodemographic 

data provide measures of key determinants of friendship segregation. These data have been extensively 

used to study friendship segregation along racial lines. I integrate prior efforts that studied as determinants 
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students’ residential locations (Mouw and Entwisle 2006), course selections (Frank, Muller, and Mueller 

2013), extracurricular participation (Schaefer, Simpkins, and Vest Ettekal 2018), and academic 

performances (Flashman 2012) to disentangle their relative contributions to socioeconomic segregation.  

The Add Health data are not without limitations, but I overcome these by employing multiple 

imputation to target the missing data problem and by using survey weights to make the results generalizable 

to the larger population of adolescents. Generalizability sets this study apart from network studies based on 

samples confined to single locations or regions (e.g., McMillan 2022) and network studies using Add Health 

without survey weights even though select groups are oversampled (e.g., Kao et al. 2019). Chetty et al. 

(2022b) also provide generalizable results but have to predict SES background entirely based on aggregate 

(zip-code level) data. The Add Health data, in contrast, are collected directly from students, parents, and 

school administrators. Moreover, Chetty and colleagues measure friendships on Facebook. It is anything 

but guaranteed and hard to verify if Facebook friendships reflect offline interaction (Dunbar 2016). In 

contrast, Add Health measured not only if students are friends but also if they spend time together.  

I examine friendship networks using exponential random graph modeling (ERGM). ERGM is a 

principled statistical approach to modeling social networks in which the whole network of interdependent 

dyads is considered a single observation. ERGM allows researchers to test competing and intersecting tie-

formation mechanisms and examine how these mechanisms shape aggregate segregation patterns (Duxbury 

2023; Robins, Pattison, and Woolcock 2005; Snijders and Steglich 2015). This approach to the study of 

segregation determinants is preferable to dyadic network models as employed, for instance, by Chetty et al. 

(2022b). Dyadic network models ignore tie-formation mechanisms that depend on other ties (e.g., triadic 

closure) and thus risk overestimating homophilous tendencies that are artifacts of unmeasured structural 

confounds. ERGM, in contrast, allows me to specify a comprehensive friendship formation model that 

captures the most important tie-formation mechanisms shaping socioeconomic segregation.  

The results of this study advance knowledge of adolescent friendship segregation in three critical 

respects. First, socioeconomic segregation in friendship networks in high school is characterized by 
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exclusion of students in the bottom third and closure among students in the upper half of the SES 

distribution. While friendship networks are overall less socioeconomically segregated than they are racially 

segregated, the exclusion of low-SES students from high-SES cliques is as pronounced. Moreover, whereas 

racial segregation is marked by mutual exclusion, socioeconomic segregation is asymmetric in that many 

friendship ties from low-SES students to peers with higher SES backgrounds are unreciprocated. 

Second, in line with Chetty and colleagues (2022b), about half of the socioeconomic segregation in 

friendship networks can be attributed to disparities in the socioeconomic composition between schools 

while the other half is attributable to friending bias within schools. Moving beyond friending bias as a 

singular concept, the decomposition reveals that, within schools, socioeconomic segregation is shaped by 

stratified courses (about 13 percent) and students’ (revealed) racial and socioeconomic preferences (about 

37 percent). Among students’ revealed preferences (i.e., friending rates net of other modeled mechanisms), 

racial homophily has the greatest impact on socioeconomic segregation albeit promoting both same- and 

cross-SES ties. In contrast to students in European secondary schools (Chabot 2024; Lenkewitz 2023; Zwier 

and Geven 2023), high schoolers also reveal socioeconomic preferences. They prefer peers in the top third 

of the SES distribution regardless of their own SES background, suggesting an overlap of social and 

socioeconomic status in high school.  

Finally, relational mechanisms like triadic closure increase clustering but have only minor effects on 

school-wide socioeconomic segregation. This result challenges a long-held assumption that triadic closure 

amplifies network segregation (e.g., Goodreau, Kitts, and Morris 2009; Kossinets and Watts 2009; Tóth et 

al. 2021; Wimmer and Lewis 2010). 

Taken together, the results show that socioeconomic segregation in high school is characterized by 

exclusion of low-SES students from high-SES cliques and shaped by compositional differences between 

schools, stratified courses within schools, and students’ racial and socioeconomic preferences. The large 

impact of racial homophily suggests that SES-integrated friendship networks in educational settings are 

difficult to achieve without also addressing racial segregation.  
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 DETERMINANTS OF SOCIOECONOMIC SEGREGATION  

IN HIGH SCHOOL FRIENDSHIP NETWORKS 

Researchers began collecting sociometric network data as early as the 1920s, and soon thereafter, they also 

began studying patterns of socioeconomic segregation in friendship networks (Coleman 1961; 

Hollingshead 1949, 1975; Neugarten 1946; Tuma and Hallinan 1979). This work is largely univariate and 

confined to single localities (e.g., schools). The inclusion of a network module in the 1985 General Social 

Survey spurred work based on ego-centric network data that is generalizable to larger populations (Marsden 

1987; Smith et al. 2014; Verbrugge 1977; Wright 1997). The systematic analysis of determinants of 

segregation patterns using sociometric network data began with the development of statistical network 

models in 1980s, such as the ERGM (Holland and Leinhardt 1981). This literature (reviewed in Appendix 

C1) emphasizes five key determinants of socioeconomic segregation in high school friendship networks: 

compositional differences between schools, and, within schools, stratified settings, homophilous 

tendencies, popularity differences, and relational mechanisms (Rivera, Soderstrom, and Uzzi 2010). I 

discuss these determinants (summarized in Figure 1) in the following. 

Socioeconomic segregation between schools 

Parents’ choices on where to live and which school to enroll their children produce differences in SES 

composition between school districts and schools that limit students’ opportunities to form friendship across 

socioeconomic lines (Bischoff and Reardon 2014; Caetano and Macartney 2021; Owens et al. 2016). Chetty 

and colleagues (2022b) find that about half of the socioeconomic segregation in friendship networks is 

determined by such compositional differences between schools while students’ friendship choices within 

schools account for the other half.  

Socioeconomic segregation within schools: Stratified settings 

Within schools, sorting and self-selection processes create settings (or social foci) in which students are 

more likely to become friends simply because they meet regularly and participate together in course, 

extracurricular, and neighborhood activities (Feld 1981). School settings can induce socioeconomic 
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segregation in friendship networks if their SES composition is more homogenous than the school overall 

(i.e., if settings are stratified). In particular, courses are stratified due to academic tracking (Chmielewski 

2014; Frank et al. 2013; Kalogrides and Loeb 2013). In contrast, if school settings are less homogenous 

than the school overall, proximity effects on friendship formation will reduce socioeconomic segregation 

in friendship networks. It has been suggested that extracurricular activities, such as sports teams, may 

constitute such settings within schools (Lessard and Juvonen 2019; Malacarne 2017). Lastly, while 

neighborhoods drive socioeconomic segregation between schools, it is unclear whether residential 

proximity (e.g., taking the same bus to school) also creates stratified settings within schools. In traditional 

neighborhood schools, neighborhood and school socioeconomic composition largely overlap. The 

expansion of alternatives since 1990, however, may have created this new layer of stratification within 

schools (Bischoff and Tach 2020; Rich and Owens 2023). 

Besides structural barriers (i.e., differences in SES composition between schools and stratified settings 

within schools), students’ preferences may also explain socioeconomic segregation. Prior research 

differentiates between a desire to befriend similar others (homophilous tendencies) and an aspiration to 

befriend others with greater characteristics (aspirational tendencies) that produces popularity differences 

across attributes (Snijders and Lomi 2019). 

Socioeconomic segregation within schools: Homophilous tendencies 

Social-psychological research shows that people tend to choose friends similar to themselves on a wide 

variety of characteristics (McPherson, Smith-Lovin, and Cook 2001). Crucially, not homophily with respect 

to SES background will induce socioeconomic segregation but also homophily with respect to attributes 

correlated with SES, such as academic performance and race. Their impact on socioeconomic segregation 

depends on the strength of homophily with respect to the attribute and on the correlation between the 

attribute and SES (Blau 1977; Simmel 1908).  

SES homophily. In contrast to racial homophily, SES homophily is thought to be less a result of 

intentional ingroup favoritism (or outgroup exclusion) and more an unintended consequence of mutual 



 

 

81 

 

attractions based on shared cultural tastes, interests, beliefs, and behaviors (Edelmann and Vaisey 2014; 

Lewis and Kaufman 2018; Lizardo 2006; Mark 2003). A long tradition of sociological research provides 

thick descriptions of how these mutual attractions correlate with SES background to create more or less 

salient boundaries (Bourdieu 1984; Ferguson and Lareau 2021; Khan 2011; Lamont and Fournier 1992; 

Lamont and Lareau 1988; Small 2009). Quantitative evidence on SES homophily, by contrast, is 

inconclusive. Not only do we lack causal evidence for SES homophily, but also studies using observational 

data provide limited evidence because SES homophily is often not sufficiently separated from correlated 

drivers. Moreover, even though homophily is sometimes portrayed as an invariable law, empirically, 

homophilous tendencies show dependencies on age, period, cohort, as well as institutional and cultural 

context (McFarland et al. 2014). For example, Hollingshead’s (1949) study of Elmtown High was among 

the first to uncover socioeconomic clustering among students. When Coleman revisited this school ten years 

later, he found little evidence for it (Cohen 1979; Coleman 1961). Similarly, while recent studies find 

evidence for SES homophily in the US high schools (Malacarne 2017) and Chinese middle schools (An 

2022), there is little evidence of it in European secondary schools (Chabot 2024; Lenkewitz 2023; Zwier 

and Geven 2023). 

GPA homophily. Students are more likely to befriend peers with similar academic performance 

(Flashman 2012; Quillian and Campbell 2003; Tuma and Hallinan 1979). Since GPA is also correlated with 

SES background (Hanushek et al. 2022; Sirin 2005), homophily based on academic performance can be 

expected to induce socioeconomic segregation in friendship networks. 

Race homophily. Whereas racial segregation in friendship networks is not a by-product of SES 

homophily (Moody 2001; Zeng and Xie 2008), the extent to which racial homophily shapes socioeconomic 

segregation is unclear. This question hinges upon whether race and SES background correlate within 

schools. While there is a persistent race-SES correlation at aggregate levels, it would be a fallacy to infer 

from it a correlation within schools. Schools are socioeconomically selective, and this selectiveness 

reshapes the link between race and SES background within schools. In the Add Health schools, the race-
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SES correlation between schools is 𝜌𝐵 = 0.24. Within schools, in contrast, it is only 𝜌𝑊 = 0.11 (see 

Appendix C2 for details). In fact, within schools, SES disparities are greater within racial groups than 

between them. SES disparities within racial groups produce a countervailing integrative effect of racial 

homophily by inducing cross-SES ties within racial groups.  

Socioeconomic segregation within schools: Popularity differences 

Rather than a preference to befriend similar peers, students may also aspire to befriend peers with a higher 

status than themselves (An 2022; An and McConnell 2015; Dijkstra, Cillessen, and Borch 2013; Homans 

1961; Laumann 1965; Mark 2003; Skvoretz 2013). Such aspirational tendencies can affect socioeconomic 

segregation if social and socioeconomic status overlap in high school. Popularity differences by SES 

background attest to this consolidation of social and socioeconomic status (Hjalmarsson and Mood 2015; 

Malacarne 2017; Raabe, la Roi, and Plenty 2024; Zeng and Xie 2008). The consequences for socioeconomic 

segregation are unclear, however. The aspiration to befriend high-SES peers nudges all but the students at 

the top of the SES distribution to form cross-SES friendships. The (so far unexamined) question is whether 

high-SES students reciprocate such ties. In the same vein can popularity differences on correlates of SES 

affect socioeconomic segregation in friendship networks.   

Socioeconomic segregation within schools: Relational mechanisms 

Socioeconomic segregation in friendship networks can also be affected by relational mechanisms: tie-

formation mechanisms that depend on the structure of other ties in the network. Relational mechanisms 

reflect students’ tendency to base friendship choices on already existing friendship ties. Much like 

Schelling’s (1971) classic model of residential segregation, relational mechanisms have the potential to 

dynamically amplify existing tendencies (e.g., modest preferences) to substantial segregation patterns. They 

must therefore be considered so as not to overestimate other modeled determinants and because such “social 

multiplier” effects are interesting in and of themselves. 

The most important relational mechanisms are the tendency to reciprocate friendships and the tendency 

to befriend others with whom we have a friend in common (triadic closure). Reciprocation and balance 
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norms are thought to amplify socioeconomic segregation (e.g., Goodreau, Kitts, and Morris 2009; Kossinets 

and Watts 2009; Tóth et al. 2021; Wimmer and Lewis 2010). The intuition is that, if high-SES students are 

more likely to befriend other high-SES peers, the tendency to reciprocate such friendships and close open 

triads will produce even more of such ties. However, not only do we lack convincing evidence whether this 

is this case empirically,4 but also analytical work on the effect of balancing mechanisms on network 

segregation comes to contradictory conclusions (Abebe et al. 2022; Asikainen et al. 2020; Grund 2014).  

Figure 1: Determinants of socioeconomic segregation in high school friendship networks. 

 
 

DATA AND METHODS 

Data 

The data for this study come from the National Study of Adolescent Health (Add Health) (Harris 2018). 

Add Health is a nationally representative sample of more than 90,000 adolescents in grades 7-12. The first 

wave was collected during the 1994-95 school year from a carefully stratified sample of 132 middle and 

high schools (to include public and private and to vary by size, location, racial and socioeconomic 

composition). Since then, four follow-up waves have been conducted. I limit my sample to the first wave 

in which all students were asked to nominate up to five closest male and five closest female friends from a 

roster. In addition to the sociometric and sociodemographic data in Add Health, I draw on measures in an 

expansion of Add Health, the Adolescent Health and Academic Achievement study (AHAA) (Muller et al. 

2007). AHAA collected high school transcripts of more than 12,000 participants in wave 3 to provide 
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students’ GPA and course selections in the first wave for all respondents that did not drop out of the panel. 

The analyses in this paper are based on two samples of these data.  

Sample 1. The description of socioeconomic segregation within and between schools is based on the 

core sample of more than 83,000 adolescents in 128 school in which both in-school and in-home interviews 

were administered (about 200 in-home interviews per school). Since Add Health oversampled select groups, 

I employ survey weights (design and nonresponse adjustment) to provide population-averaged measures of 

socioeconomic segregation within and between schools. Computational details are provided in Appendix 

A4.  

Sample 2. The decomposition of determinants of socioeconomic segregation within schools requires 

detailed information and is thus based on a sample of 5,942 adolescents in the 15 schools with the most 

complete data. This sample largely coincides with the “saturated” sample, a subset of schools in which all 

students were interviewed in school and at home. The saturated sample includes two large schools (with a 

total combined enrollment exceeding 3,100) and 14 small schools (with enrollments of fewer than 300). 

One of the large schools is predominantly white and is located in a mid-sized town. The other is ethnically 

heterogeneous and is located in a major metropolitan area. The 14 small schools, some public and some 

private, are located in both rural and urban areas. Therefore, the saturated sample is diverse but not a random 

sample. Effect estimates are therefore not population-averaged associations but average associations in the 

sample. However, comparisons show that students in both samples exhibit similar sociodemographic 

profiles and friendship networks are similarly segregated along sociodemographic lines.  

I employ multiple imputation using predictive mean matching to eliminate any missing values in both 

samples because network analyses like this one require complete data and because listwise deletion of 

students with incomplete information can lead to incorrect inference. Listwise deletion is particularly 

problematic for the purposes of this paper as removing students from the networks distorts the analyzed 

network structure (i.e., changes the number of dyads, triads, and other network structures), which could 

bias the analysis of relational mechanisms. Moreover, the primary cause for missing data in the two samples 
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is that the in-home interviews were only administered to a subset of students to create a self-weighting 

nationally representative subsample. The missing data are thus not completely at random but at random 

conditional on race, SES background, school type, and region (the basis on which students were selected). 

In this context, multiple imputation is particular effective at reducing bias and increasing power and 

outperforms other methods (Krause et al. 2020; Smith, Morgan, and Moody 2022). A detailed discussion 

of the imputation model can be found in Appendix A2.  

Measurement 

Socioeconomic status. For the main analyses, I use a pre-constructed socioeconomic status (SES) score on 

a z-scale, which is based on a principal component analysis using as input parental education, parental 

occupation, parental income, and whether a student receives free lunch. This information is collected from 

a parent during the in-home interviews. For students without in-home interviews, the SES score is predicted. 

Note that the imputation model includes variables that are highly predictive of this score (e.g., parental 

education and occupation as reported by the student during the in-school interview). To compare the 

different dimensions of SES background, I separately analyze parental education (Census educational 

groups), parental occupation (Census occupational groups), and parental income (in 1994 dollars).  

Race. I use a pre-constructed variable that categorizes students into White, Black, Native American, 

Asian, and Hispanic based on student, parent, and interviewer reports. I also differentiate 15 ethnoracial 

groups (European, African, Native, Chinese, Filipino, Japanese, Indian, Korean, Vietnamese, other Asian, 

Mexican, Cuban, Puerto Rican, Central & South American, and other Hispanic) to examine the degree to 

which ethnoracial homophily underlies racial homophily.  

GPA. I calculate the average GPA across English, Math, Social Science, and Science. For the most part, 

grades are reported by the students themselves. For 11 percent of students, I could take this information 

directly from their transcripts. 

Residential proximity. I measure students’ residential proximity by the inverse of the log-Euclidean 

distance (in meters) between students’ residential locations. For students without in-home interviews, 
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residential proximity is predicted. Note that the imputation model includes variables that are highly 

predictive of residential proximity (e.g., residential location of friends). 

Overlap courses. Students’ course selections are based on their transcripts collected in AHAA. AHAA 

measures course overlap of pairs of students as the number of courses taken together, weighted by course 

size and contact time (Muller et al. 2007). This score operationalizes the degree to which students share a 

social space in school by virtue of their patterns of course participation. For students without transcript 

information, course overlap is predicted. Note that the imputation model includes variables that are highly 

predictive of course overlap (e.g., academic performance).  

Overlap extracurricular activities. During the in-school interview, students indicated their participation 

in a list of 20 possible school clubs (e.g.,  band) and 11 sports teams (e.g., basketball). I measure the degree 

of overlap of pairs of students as the number of extracurricular activities in which they participate together. 

Friendship networks. Based on students’ nominations of their five closest male and five closest female 

friends, I create friendship networks of directed ties in each school. Students were also asked to describe 

their interactions with friends: if they hang out, discuss problems, talk on the phone, spend time together 

on the weekend, or go to each other’s homes. I use this information to define student 𝑖 a friend of 𝑗 if 𝑖 

nominated 𝑗 as a friend and also reported that they interact with 𝑗 in at least one of these ways. This 

definition of friendship therefore goes beyond mere nominations. Further, I differentiate whether student 𝑖 

or 𝑗 is reporting the friendship to identify friendship asymmetries. While asymmetric ties can reflect 

measurement error (e.g., nomination limits in the survey instrument) (Lee and Butts 2018), they also 

indicate asymmetries in friendship definition and strength (An and McConnell 2015; Ball and Newman 

2013; Gould 2002; Kitts and Leal 2021). In the Add Health networks, asymmetric ties are unlikely to reflect 

nomination limits since 60 percent of all ties are unreciprocated but only 3 percent of students nominated 

10 friends and only 24 percent hit the constraint on one of the genders. Instead, they are likely to reflect 

asymmetries in friendship definition and strength, especially because I only measure friendships where 

students report spending time together. Such asymmetries are interesting in the context of socioeconomic 
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segregation as they shed light on whether all socioeconomic groups display social closure, or whether only 

some groups exclude and only some groups are being excluded.  

Socioeconomic segregation. I measure socioeconomic segregation at a dyadic level to examine 

socioeconomic mixing patterns in greater detail than is possible with aggregate network segregation indices 

(Bojanowski and Corten 2014). To do so, I first divide students globally (i.e., across schools) into low-, 

medium-, and high-SES at the tercile cut-off points of the continuous SES score and subsequently group 

friendships with respect to these categories (i.e., low→low, low→med, low→high, etc.).5 I call this the 

socioeconomic mixing matrix. I then measure socioeconomic segregation as the surplus of same-SES ties 

(e.g., low→low) and the absence of cross-SES ties (e.g., low→high) in a network relative to a network in 

which students select friends at random. Akin to a 𝜒2 test, I calculate St = (πt
obs − πt

exp
) πt

exp
⁄ ∙ 100 for 

each combination t in the socioeconomic mixing matrix (where πt
exp

 is the expected and πt
obs is the 

observed proportion). The segregation statistic S thus measures in percent how many more or fewer ties of 

each type we observe than expected if students selected friends at random6. S ranges from 0 to infinity.7 

Figure 2: The socioeconomic mixing matrix. 

 

Descriptive statistics and a more detailed summary of all employed variables can be found in Appendix A1. 

Methodological approach 

I draw on exponential random graph models (ERGMs) for the analyses in this paper. In contrast to dyadic 

network models, which disregard fundamental properties of networks by assuming the conditional 

independence across dyads, ERGMs explicitly model dependencies among dyads that result from network 

embedding (Lusher, Koskinen, and Robins 2012). Given a network Y with yij ties connecting actors i and 

j, ERGM estimates the probability of observing Y as a function of exogenous features and endogenous 

graph statistics. ERGM has the following probability mass function: Pr(Y = y|θ, g(x, y)) =
exp(θTg(x,y))

κ(θ)
, 
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where θ is the parameter vector, g(x, y) is a matrix of exogeneous characteristics x and endogenous graph 

statistics computed on y, and κ(θ) = ∑exp(θTg(x, y)) is a normalizing constant ensuring that the sum of 

equation (1) over all possible networks equals 1. Due to the intractability of κ(θ), the denominator is 

typically approximated using Markov chain Monte Carlo (MCMC) sampling. 

To model the ensemble of networks across schools, prior studies employ a two-step approach in which 

researchers first estimate separate models per school and then average model coefficients in a meta-analytic 

approach (An 2015; Lubbers 2003). This method has come under criticism because the resulting average 

model coefficients may be inaccurate for two reasons. First, as networks vary by size, researchers using the 

two-step approach are forced to discard small networks when fitting more realistic models, overfit models 

to small networks, or specify parsimonious models that can be fit on all networks but may omit important 

tie-formation mechanisms. To the extent that coefficients reflect only a subset of networks, are poorly 

estimated, or biased, their averages will not accurately approximate average tendencies in the networks 

(Slaughter and Koehly 2016; Tolochko and Boomgaarden 2024). Second, ERGM coefficients –like in any 

other nonlinear regression model – are confounded with residual variation and thus is only identified up to 

a scale factor (Duxbury 2021; Duxbury and Wertsching 2023). Pooling parameters across models is only 

valid if we can assume that the residual variation is constant across schools, which is unlikely to hold in 

practice. 

Multilevel ERGM make it now possible to resolve these issues by jointly estimating model parameters 

across networks (Krivitsky et al. 2023; Lazega and Snijders 2016; Slaughter and Koehly 2016; Stewart et 

al. 2019). I take the simplest multilevel approach and model the ensemble of networks Y1, Y2, … , Yn by 

jointly estimating model parameters across networks while letting exogenous features and endogenous 

graph statistics vary arbitrarily between them. This pooling of information is crucial for the purposes of this 

paper. It allows me to estimate a friendship formation model complex enough to capture the most important 

tie-formation mechanisms shaping socioeconomic segregation. While simple network models are 

invaluable to test the existence of tie-formation mechanisms, more complex models are necessary to 
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examine their interplay and impact on network structure characteristics, such as segregation patterns. In 

particular, interactions among tie-formation mechanisms must be considered to avoid results that are 

artifacts of restrictive functional forms (Block 2015, 2018; Grund and Densley 2015). Since network 

density varies across schools, I preserve schools’ network densities by constraining the outdegree 

distribution of each network to the observed one during estimation and simulation. 

Recent advances in simulation approaches to evaluate micro-macro linkages show that ERGM can be 

used to study how local tie-formation mechanisms locally shape network structures globally (Duxbury 

2023; Robins et al. 2005; Snijders and Steglich 2015). These approaches shift away from significance 

testing of model coefficients towards predictive modeling. Following Duxbury (2023), I use ERGMs to 

simulate networks and then measure in the synthetic networks how the modeled tie-formation mechanisms 

shape socioeconomic segregation. By constraining the simulation space to networks that exhibit the same 

outdegree distribution as the observed networks, I ensure comparability across simulation conditions and 

render the results independent of Add Health’s outdegree limitation. While ERGM has not yet been 

extended to integrate survey weights during estimation, the chosen simulation approach allows me to use 

survey weights post-estimation to reflect that dyads differ in their inclusion probability in the sample. 

I fit all ERGMs using MCMC maximum likelihood estimation with a burn-in of 200,000, a MCMC 

sample size of 500,000, a thinning interval of 3,000, and the Hummel termination criterion. Convergence 

statistics suggest that the models have converged, and goodness-of-fit statistics indicate that they fit the 

observed network structure quite well. See Appendices C3-6, for more details on model estimation and fit. 

Analysis 1: Dividing socioeconomic segregation in friendship networks into within- and between-school 

components 

To divide socioeconomic segregation in friendship networks into within- and between-school components, 

I draw on sample 1 and use ERGM to generate two types of random networks. In the first model (M1), 

students select friends at random and are not confined to their school but can nominate anyone in the sample. 

The synthetic networks generated by M1 are thus void of disparities in the SES composition between 

schools and friending biases within schools. In Bernoulli random graphs, the expected proportion of each 
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tie combination in the socioeconomic mixing matrix equals their unconditional probability, which is 

E(π) = (1 3⁄ )2 since students are separated into three equal-sized groups. Rather than Bernoulli random 

graphs, however, I generate random networks with the same outdegree distribution as the observed network. 

These random networks provide more realistic baselines and ensure that differences between expected and 

observed mixing patterns are not artifacts of Add Health’s outdegree limitation. Due to this constraint, the 

expected mixing pattern deviates somewhat from 11.1 percent.  

In the other model (M2), students select friends at random but only within their school. The synthetic 

networks generated by M2 are thus void of friending biases within schools but retain disparities in the SES 

composition between schools. Based on these two null models, the proportion of each type of tie t in the 

socioeconomic mixing matrix can be divided into within- and between-school components: 

Ŝt
total = (πt

obs − π̂t
M1) π̂t

M1⁄ ∙ 100 

Ŝt
between = (πt

M2 − π̂t
M1) π̂t

M1⁄ ∙ 100 

Ŝt
within = Ŝt

total − Ŝt
between 

I repeat the simulation process 1,000,000 times, base it on all 10 imputations (100,000 per imputation), 

and draw simulation coefficients from a multivariate normal distribution based on the ERGM parameter 

and variance estimates. In this way, I create null distributions that reflect the inherent randomness of 

friendship formation, as well as sampling, estimation, and imputation uncertainty. I ensure that the 

calculated proportions are representative of high school friendship networks in 1995 by weighing synthetic 

and observed friendship ties by the product of two friends’ sample inclusion probabilities. 

Analysis 2: Parsing the determinants of socioeconomic segregation within schools 

To parse the determinants of socioeconomic segregation within schools, I fit another model (M3) using 

sample 2 in which students select friends based on the hypothesized mechanisms. Subsequently, I generate 

synthetic networks from M3 in which the estimated conditional effect of each mechanism k on friendship 

formation, θ̂k, is turned on, one by one. The impact of k on socioeconomic segregation then is the change 

in the proportion of each type of tie in the socioeconomic mixing matrix, π̂t, measured in the synthetic 
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networks when the mechanism is turned on: τ̂t,θk = π̂t,θk=θ̂k
M3 − π̂t,θk=0

M3 . Duxbury (2023) calls these in silico 

experiments “micro effects on the macro structure”. I repeat the simulation process 1,000,000 times, base 

it on all 10 imputations (100,000 per imputation), and draw simulation coefficients from a multivariate 

normal distribution based on the ERGM parameter and variance estimates. In this way, I create distributions 

of π̂t,θk
M3  that reflect the inherent randomness of friendship formation, as well as sampling, estimation, and 

imputation uncertainty. 

The main friendship formation model (M3) includes stratified settings (neighborhoods, courses, and 

extracurricular activities), homophilous tendencies (GPA, race, and SES), popularity differences (GPA, 

race, and SES), and relational mechanisms (preferential attachment, reciprocity, and triadic closure). I also 

include interactions between race and SES homophily, race and SES popularity, and homophilous 

tendencies and relational mechanisms. Appendix C3 provides a more detailed exposition and justification 

of the model specifications and details how the chosen operationalization builds and improves on prior 

work that separates homophily and popularity mechanisms using mixing matrices (e.g., An 2022; An and 

McConnell 2015). 

I start by turning on the effects of stratified settings to examine how neighborhoods, courses, and 

extracurricular activities contribute to socioeconomic segregation in the absence of homophilous 

tendencies, popularity differences, and relational mechanisms. Subsequently, I switch on homophilous 

tendencies to analyze how homophily on the basis of GPA, race, and SES background within these settings 

contribute to socioeconomic segregation. Then, I turn on popularity differences by GPA, race, and SES 

background to examine the extent to which segregation is the result of an unequal rejection of outgroup 

members rather than an equal one (i.e., homophily). Finally, I switch on relational mechanisms to analyze 

if they amplify the existing socioeconomic segregation.  

While I chose this order carefully, Appendix C5 shows that the impact of each mechanism on 

socioeconomic segregation does not depend much on the ordering. In other words, τ̂t,θk + τ̂t,θl ≈ τt,θk+θl 

for any order and ∑τt,θk ≈ π̂t
M3,full − π̂t

M3,empty
. The reason is that I switch on conditional effects estimated 
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in a single model rather than unconditional effects estimated in a sequence of models. An exception is 

relational mechanisms; their impact on socioeconomic segregation depends on the existing segregation in 

the network, which is why I add them last.8 As with any other ceteris paribus approach, changing a single 

model parameter while holding the other parameters constant is unrealistic. Simulation-based thought 

experiments provide intuitions about relative effect sizes, but they cannot predict what will happen in 

reality. 

RESULTS 

Degree and patterns of socioeconomic segregation in high school friendship networks 

Friendship networks in high schools are segregated along multiple dimensions. The friendship network in 

Figure 3, for instance, shows signs of clustering by gender, race, and SES background. Therefore, I first 

compare socioeconomic segregation to segregation on the basis of other demographic categories. The 

results are reported in Table 1. 

The grey-shaded row provides the overall segregation S for each attribute, comparing the observed 

proportion of in-group ties to the expected proportion if the attribute was uniformly distributed between 

schools and students selected friends at random within schools. To give an example, 95 percent of random 

networks exhibit a proportion of same-SES friendships between 33.7 and 34.6 percent. Since the observed 

39.2 percent lies outside of this interval, the socioeconomic segregation in high schools is systematic: 

friendship ties between students with the same SES background are S = 15 percent more likely than if 

students selected friends at random.  

The results in Table 1 show that the socioeconomic segregation in friendship networks is less 

pronounced than segregation based on race (+54%), gender (+43%), and GPA (+31%), but more 

pronounced than the segregation based on the language spoken at home (+3%). Comparing the different 

indicators of students’ SES background, I find that friendship networks are more segregated in terms of 

parental education (+17%) and parental occupation (+15%) than in terms of parental income (+12%). The 
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evidence of socioeconomic segregation notwithstanding, these results show that there is quite a bit of 

socioeconomic mixing in high school: about 60 percent of all friendship ties cross socioeconomic lines. 

In Table 1, continuous attributes were divided into low, medium, and high categories at the tercile cut-

off points and collapsed into a dichotomous indicator of same- vs. cross-group ties, which can obscure 

important heterogeneities in how groups relate to each other. To understand whether interaction patterns 

differ between different points in the SES distribution, in Figure 4, I distinguish all tie combinations in the 

socioeconomic mixing matrix. The figure shows that low-SES students do not select friends based on their 

SES background. They nominate low-SES students 5 percent more often, medium-SES students 2 percent 

more often, and high-SES students 8 percent less often than expected in random graphs with the same 

outdegree distribution. They also nominate fewer friends since the observed proportions all fall below 11.1 

percent, which is what we would expect if outdegree did not differ by SES background. The situation differs 

for medium-SES students. They nominate low-SES students 14 percent less often, medium-SES students 2 

percent more often, and high-SES students 12 percent more often than expected. Most clearly, high-SES 

students select friends based on their SES background. They nominate high-SES students 34 percent more 

often, medium-SES students 2 percent less often, and low-SES students 32 percent less often than expected.  

Both medium- and high-SES students nominate low-SES peers as friends less often and high-SES peers as 

friends more often than expected. Socioeconomic segregation in high school friendship networks is 

therefore characterized by unilateral exclusion of students in the bottom third of the SES distribution and 

closure among students in upper half of the SES distribution. Robustness checks in which I differentiate the 

SES score into more than three categories, choose different percentiles as cutoff points, examine the 

continuous SES score, and analyze reciprocated ties clearly confirm this pattern (see Appendix B).  

Differentiating interaction patterns between different points in the SES distribution also reveals that 

socioeconomic segregation is more pronounced than is apparent in Table 1. In particular, the boundary 

between low- and high-SES students is bright. Much prior work collapses socioeconomic mixing into a 

dichotomous indicator of same- vs. cross-SES ties (e.g., Malacarne 2017) or a linear measure of SES 
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distance between peers (e.g., McMillan 2022). These operationalizations mask the unilateral and nonlinear 

segregation pattern to some extent (see Appendix B), which explains why prior studies find less evidence 

for socioeconomic segregation in the Add Health networks. Chetty et al. (2022b) also identify a greater 

degree of socioeconomic segregation. To understand whether the data (Facebook friendships) may be 

responsible for the divergent conclusions, I replicate their analysis on the Add Health networks.9 I find that 

friendship networks in the Add Health schools are more segregated than the friendship networks on 

Facebook. Consequently, measurement and interpretation differences are the reason why this study and 

Chetty et al. (2022b) identify a greater degree of socioeconomic segregation than prior work. 

Determinants: Compositional differences between schools 

Having described socioeconomic segregation in friendship networks, next I parse its determinants. I start 

by decomposing socioeconomic segregation into compositional differences between schools and students’ 

friendship choices within schools. 

Table 1 indicates that schools differ in composition much more by race (34%) than by SES (7%). Within 

schools, too, socioeconomic segregation is low (7%) compared to segregation based on race (20%), 

academic performance (22%), and gender (39%). While compositional differences between schools are 

similar across the different indicators of SES background, within schools, friendship networks are 

segregated more by parental education (8%) and occupation (7%) than by income (3%). Overall, disparities 

in the SES composition between schools account for about 7/14.5 ∙ 100 ≈ 48 percent of the 

socioeconomic segregation in friendship networks while students’ friendship choices explain the remaining 

52 percent. In contrast, 62 percent of the racial segregation can be attributed to compositional differences 

between schools while students’ friendship choices within schools only explain 38 percent. 
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Figure 3: Segregation patterns in a high school friendship network. The figure depicts three times the same friendship network in a school in the Northeast. The 

network shows signs of clustering by gender, race, and  SES background. In the displayed connected component, same-gender ties are 20.9%, same-race ties are 

24.3%, and same-SES ties are 14.2% more likely than if students selected friends at random.  
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Table 1: Segregation in high school friendship networks by social category. The table reports the expected proportion of in-group ties if the attribute was uniformly 

distributed between schools and students selected friends at random within schools (𝜋̂M1), the expected proportion if students selected friends at random within 

schools (𝜋̂M2), and the observed proportion (𝜋obs). Total segregation then equals 𝑆̂𝑡
total = (𝜋obs − 𝜋̂M1) 𝜋̂M1⁄ ∙ 100, segregation between schools equals 𝑆̂𝑡

between =

(𝜋̂M2 − 𝜋̂M1) 𝜋̂M1⁄ ∙ 100, and segregation within schools equals 𝑆̂𝑡
within = 𝑆̂𝑡

total − 𝑆̂𝑡
between. 

Interpretation example: We expect 51.9% of all friendships to be same-gender ties if schools did not differ in their gender composition and students selected friends 

at random. We observe 74.2% of all friendships to be same-gender ties, which is 43% more than expected. Of this segregation, 39.7 percentage points are within 

schools and 3.3 percentage points are between schools.  

Calculation notes: The expected proportions are based on random networks with the same outdegree distribution as the observed networks. The 95% predictive 

interval reflects the inherent randomness of friendship formation as well as sampling, estimation, and imputation uncertainty. Continuous attributes are categorized 

into low, medium, and high at the tercile cut-off points. 

      Indicators of SES 

 Gender Race Language GPA SES 
Parental 

education 

Parental 

occupation 

Parental 

income 

M1: Expected 51.9 50.6 85.2 35.0 34.2 33.6 41.4 35.1 

95% PI 51.4, 52.3 50.3, 50.9 84.7, 85.8 34.6, 35.5 33.7, 34.6 33.1, 34.0 41.0, 41.9 34.3, 35.6 

M2: Expected within 53.6 64.7 86.4 37.8 36.5 36.7 44.7 37.9 

95% PI 52.9, 56.2 64.2, 66.1 86.0, 87.0 37.3, 38.7 36.0, 37.1 36.2, 37.2 44.2, 45.2 37.1, 38.6 

Observed 74.2 77.9 87.6 46.1 39.2 39.3 47.7 39.2 

Segregation S (in %) 43.0 53.8 2.8 31.6 14.5 17.1 15.0 11.8 

- within schools  39.7 20.4 1.4 23.6 7.5 7.8 7.3 3.6 

- between schools 3.3 33.4 1.4 8.0 7.0 9.3 7.7 8.2 
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Figure 4: Socioeconomic segregation by tie combination in the socioeconomic mixing matrix. The figure differentiates segregation by tie combination in the 

socioeconomic mixing matrix. The bars are based on the proportion of same- and cross-SES ties t expected if SES was uniformly distributed between schools and 

students selected friends at random within schools (𝜋̂𝑡
M1), students selected friends at random within schools (𝜋̂𝑡

M2),  and the observed proportion (𝜋𝑡
obs). Total 

segregation then equals 𝑆̂𝑡
total = (𝜋𝑡

𝑜𝑏𝑠 − 𝜋̂𝑡
M1) 𝜋̂𝑡

M1⁄ ∙ 100, segregation between schools equals 𝑆̂𝑡
between = (𝜋𝑡

M2 − 𝜋̂𝑡
M1) 𝜋̂𝑡

M1⁄ ∙ 100, and segregation within schools 

equals 𝑆̂𝑡
within = 𝑆̂𝑡

total − 𝑆̂𝑡
between. 𝜋̂𝑡

M1, 𝜋̂𝑡
M2, and 𝜋̂𝑡

obs can be found in Appendix B. 

Interpretation example: We observe 34% more friendship ties among high-SES students than expected. Of this segregation, 18 percentage points are within schools 

and 16 percentage points are between schools.  

Calculation notes: The expected proportions are based on random networks with the same outdegree distribution as the observed networks. The 95% predictive 

interval reflects the inherent randomness of friendship formation as well as sampling, estimation, and imputation uncertainty. To differentiate tie combinations, 

students are categorized into low-, med-, and high-SES at the tercile cut-off points of the continuous SES score. Differences in the between-school effect by tie 

direction are due to outdegree differences by SES background. 
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Figure 4 reveals again that the dichotomy between same- and cross-SES friendship conceals important 

differences across the SES distribution. The fact that low-SES students nominate other low-SES students 

more often and high-SES students less often than expected is largely driven by meeting opportunities. They 

do not select friends based on their SES background. The opposite is the case for medium-SES students. 

Since they attend schools both with low- and high-SES students, medium-SES students have the most 

opportunities to befriend students with different SES backgrounds. Their friendship choices thus largely 

explain why high-SES peers are overrepresented and low-SES peers are underrepresented among their 

friends. The disconnect of high-SES students from their low-SES peers is driven both by meeting 

opportunities (40%) and their friendship choices (60%).  

Figure 4 also shows that the identified key pattern of segregation – the exclusion of students at the 

bottom and closure among students in the upper part of the SES distribution – is pronounced and determined 

in important ways by students’ friendship choices: med→low and high→low ties are 11 and 18 percent less 

likely and med→high and high→high ties are 10 and 19 percent more likely than if students selected friends 

at random within schools. The fact that high→low ties are about as unlikely (-18%) as interracial ties on 

average (-20%) speaks to the strength of this pattern within schools. There is an important difference 

between racial and socioeconomic segregation, however. In Figure 4, the difference in likelihood between 

higher→lower ties and lower→higher ties equals 15.7 percentage points on average across combinations. 

The rejection of cross-SES ties is therefore asymmetric. The same differences in the racial mixing matrix 

(e.g., White→Black and Black→White ties), in contrast, equals less than 1 percent on average across tie 

combinations. Therefore, while racial segregation is marked by mutual exclusion, socioeconomic 

segregation is characterized by unilateral exclusion of low-SES students from higher-SES cliques.
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Figure 5: ERGM coefficient plot. The figure provides average marginal effects (AMEs) (Duxbury and Wertsching 2023). 

AMEs measure the average change in tie probability as a variable increases by one unit. Both point estimates and one 

(inner bar) and two times (outer bar) the standard error are displayed. AMEs are on a probability scale, which allows for 

effect size comparisons. Effects should be interpreted relative to the baseline tie probability, which is 0.01% on average 

across networks. Coefficients have been squished into a -0.5-0.5 range (AME of course overlap and reciprocity are greater 

than 0.5). See Appendix C4 for full results. **** p<0.0001, *** p<0.001, ** p<0.01, * p<0.05, + p<0.01.  

Interpretation example: The popularity of high-SES students increases the baseline tie probability of ties to them by 0.1 

percentage points (from 0.01% to 0.02%). 
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Figure 6: Determinants of the exclusion of low-SES students. The figure displays the predicted proportion of ties to low-SES students when key determinants of 

socioeconomic segregation are turned on one by one. The predicted proportions are presented with boxplots that display prediction uncertainty due to sampling, 

estimation, imputation, and the inherent randomness in friendship formation. M2 predicts the proportion of high→low ties and med→low ties if students selected 

friends at random within schools. M3a-l then predict how key determinants of socioeconomic segregation contribute to the absence of ties to low-SES students. 

Below the graph, 𝜏 describes the impact of each mechanism on the predicted proportion (in percentage points), and % reports the impact of each mechanism as a 

share of the total gap between expected and observed proportion (in %).  

Interpretation example: The predicted proportion of ties to low-SES students if students selected friends at random equals 21%. Turning on the course effect on 

friendship formation decreases the predicted proportion by 0.9 percentage points to 20.1%. The proximity effect of taking the same courses thus explains 23.5% of 

the total gap between expected and observed proportion (0.9/(17.1-21)100≈-23.5).  

Calculation notes: The 95% predictive interval reflects the inherent randomness of friendship formation as well as sampling, estimation, and imputation uncertainty. 

To differentiate tie combinations, students are categorized into low-, med-, and high-SES at the tercile cut-off points of the continuous SES score.  
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Figure 7: Determinants of socioeconomic segregation overall. The figure displays how key determinants shape socioeconomic segregation overall by summing up 

the effect of each mechanism across tie combinations in the socioeconomic mixing matrix. Socioeconomic segregation in friendship networks is characterized, on 

the one hand, by an abundance of ties between students with the same SES background, and, on the other hand, by an absence of ties between students with different 

SES backgrounds. Accordingly, in the figure, the effect of each mechanism is displayed as segregation-increasing if it adds to the proportion of same-SES ties or 

takes from the proportion of cross-SES ties and vice versa.  

Interpretation example: The observed friendship networks include more same-SES ties and fewer cross-SES ties than random networks (+7.6pp in total). M3 predicts 

that students’ course selections contribute 2.03pp to the total socioeconomic segregation by increasing same-SES ties (e.g., high→high: +0.6pp) and reducing some 

cross-SES ties (e.g., high→low:-0.6pp). Courses also integrate networks by increasing high→med ties but this integrative effect amounts to less than 0.3pp. Overall, 

students’ course-taking patterns explain 26.8% of the total socioeconomic segregation in students’ friendship networks.  

Calculation notes: The 95% predictive interval reflects the inherent randomness of friendship formation as well as sampling, estimation, and imputation uncertainty. 

To differentiate tie combinations, students are categorized into low-, med-, and high-SES at the tercile cut-off points of the continuous SES score. 
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Determinants: Stratified settings, homophilous tendencies, popularity differences, and relational 

mechanisms within schools 

The preceding sections made clear that socioeconomic segregation in friendship networks is not only 

determined by disparities in the SES composition between schools but also by students’ friendship choices 

within schools. While these choices induce exclusion of students at the bottom and closure among students 

in upper part of the SES distribution, they do not have to reflect preferences for exclusion and closure. 

Socioeconomic segregation in friendship networks may just be an unintended consequence of mechanisms 

correlated with such preferences. Next, I therefore disentangle four key mechanisms that shape 

socioeconomic segregation in friendship networks within schools: stratified settings, homophilous 

tendencies, popularity differences, and relational mechanisms.   

The results are presented in three figures. Figure 5 shows the ERGM coefficients – the conditional 

effects of the four key mechanisms on friendship formation. Figure 6 depicts the consequences of these tie-

formation mechanisms for the exclusion of low-SES students. I focus on the exclusion of students at the 

bottom rather than closure among students in upper part of the SES distribution because the results largely 

mirror each other. Finally, Figure 7 displays the impact of each mechanism on socioeconomic segregation 

overall by aggregating the results across all tie combinations in the socioeconomic mixing matrix. 

Exclusion of low-SES students  

Figure 6 presents why low-SES students are underrepresented in the friendship networks of their peers 

with higher SES backgrounds. M2 predicts that we would expect 21 percent of all friendships to be 

med→low and high→low ties if students selected friends at random. Since we only observe 17.1 percent, a 

fifth of the possible ties of this type are unrealized (3.9 percentage points).10 

Models M3a-l measure the extent to which stratified settings, homophilous tendencies, popularity 

differences, and relational mechanisms contribute to the exclusion of low-SES students. M3a-c indicates 

that stratified settings together explain about 38 percent of the gap between expected and observed 

proportions. This impact is driven by stratified courses and extracurricular activities. The neighborhood 
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effect on friendship formation (M3a) has no appreciable impact on the exclusion of low-SES students as 

neighborhoods are overall as segregated as the schools they feed. In contrast, the separation of students into 

different courses (M3b) and extracurricular activities accounts for 24 percent and 14 percent, respectively. 

M3d-f indicate that homophilous tendencies together reduce the exclusion of low-SES students by 

about 6 percent. This impact is driven primarily by racial and subracial11 homophily (M3e). The friendship 

formation model (see coefficient plot in Figure 5) indicates that minority students display more racial 

homophily while high-SES students display less racial homophily. Together these effects increase the 

number of med→low and high→low ties, reducing the gap between expected and observed proportions by 

14 percent. In contrast, GPA homophily (M3d) contributes to the exclusion of low-SES students but its 

impact is small. SES homophily (M3f) too contributes only marginally to the exclusion of low-SES 

students. Therefore, the exclusion of low-SES students is not driven by medium- and high-SES peers 

wanting to be among their own kind and rejecting all other students equally.  

Instead, M3g-i indicate that popularity differences explain the exclusion of low-SES students, which 

together account for about 41 percent of the gap between expected and observed proportions. Rather than 

popularity differences by academic performance (M3g) or race (M3h), however, it is popularity differences 

by SES background that explain the effect. The friendship formation model reveals that high-SES students 

are more popular than other students, which nudges medium- and high-SES students to befriend high-SES 

instead of low-SES peers. 

Lastly, M3j-l indicate that relational mechanisms also contribute to the exclusion of low-SES students, 

together accounting for about 27 percent. Both students’ tendency to reciprocate friendship ties (M3k) and 

their tendency to close open triads (M3l) produce fewer ties to low-SES students.   

To conclude, low-SES students are underrepresented in the friendship networks of their higher-SES peers 

because of basic clique formation mechanisms (+27%), stratified courses and extracurricular activities 

(+38%), and because both medium- and high-SES students prefer high-SES peers as friends (+44%). In 

contrast, racial homophily reduces the exclusion of low-SES students (-14%).  
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Socioeconomic segregation overall  

Med→low and high→low ties constitute only a subset of tie combinations in the socio-economic mixing 

matrix. In a final step, I therefore aggregate the effect of each mechanism across all tie combinations to 

examine their overall impact on socioeconomic segregation within schools. In Figure 7, the overall impact 

of each mechanism is plotted as a stacked bar chart. Socioeconomic segregation in friendship networks is 

characterized by an overrepresentation of ties between students with the same SES background and an 

underrepresentation of ties between students with a different SES background. Accordingly, in the figure, 

the effect of each mechanism on the predicted proportion by tie type is displayed to increase segregation if 

it increases the proportion of same-SES ties or reduces the proportion of cross-SES ties and vice versa. 

Compared to analyzing aggregate segregation indices, this approach displays the overall impact of each 

mechanism without obscuring effect heterogeneities across the SES distribution. 

The aggregate analysis shows that stratified settings account for about 27 percent of the total 

socioeconomic segregation within schools. The main structural constraint to integrated friendship networks 

are stratified courses. In contrast, extracurricular activities have an ambivalent impact on socioeconomic 

segregation. They nudge participating low-SES students to befriend high-SES students. At the same time, 

however, they prevent medium- and high-SES students from befriending nonparticipating low-SES peers. 

These countervailing effects largely offset each other.  

Student preferences account for about 75 percent of the total socioeconomic segregation within schools. 

Students’ preferences regarding peers’ racial and socioeconomic background rather than their academic 

performance explain this effect. Despite contributing to socioeconomic segregation overall, students’ 

preferences have countervailing effects on segregation, however. For example, students’ racial preferences 

induce closure among low-SES students and among high-SES students, which explains about 68 percent of 

the socioeconomic segregation in friendship networks. At the same time, however, racial homophily 

increases med→low ties within racial groups. Students’ socioeconomic preferences have an even more 

ambivalent impact on socioeconomic segregation. Residual SES homophily induces closure among high-
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SES students, which reduces in particular high→med ties. However, the relative unpopularity of low-SES 

peers offsets this reduction again as high-SES students want to befriend medium-SES peers rather than low-

SES peers.  

In general, the segregating impact of SES homophily is largely offset by the integrating impact of 

popularity differences by SES background. Students’ socioeconomic preferences still contribute to 

socioeconomic segregation (5%) because popularity differences by SES background increase some cross-

SES ties (low→med, low→high, and med→high) but not others (med→low and high→low). In fact, the 

ambivalent impact of popularity differences by SES background is what creates the asymmetry that is 

characteristic of socioeconomic segregation in high school: many ties from low-SES students to peers with 

higher SES backgrounds are unreciprocated. The fact that both medium-SES and high-SES students want 

to befriend high-SES rather than low-SES peers reflects aspirational and homophilous tendencies, 

respectively. Students’ socioeconomic preferences differ in this way from their racial preferences since 

racial preferences are dominated by homophilous tendencies (see Figure 5). 

Finally, relational mechanisms together do not contribute much to socioeconomic segregation within 

schools as their effects are small and both in- and decrease cross-SES friendships. The underlying reason 

is that unreciprocated friendships and open triads are more likely between students with attribute 

combinations that inhibit tie formation. Reciprocation and balance norms can bridge such barriers, but the 

results show that they succeed more readily from below: reciprocity and triadic closure increase low→high 

and med→high ties but reduce high→low and high→med ties. While, for reciprocity, the segregating effect 

dominates (+4%), for triadic closure, the integrating effect prevails (-5%) because open triads close more 

frequently between dissimilar students (see Figure 5). Because these effects offset each other, relational 

mechanisms barely affect socioeconomic segregation in friendship networks. 

To conclude, socioeconomic segregation in high school friendship networks is largely driven by 

stratified courses (+27%) and racial homophily (64%). While other mechanisms also affect socioeconomic 

segregation, their impacts are small, ambivalent, and offset each other.  
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LIMITATIONS 

This study is not without limitations. First, I had to limit myself to the first wave of Add Health to analyze 

complete friendship networks. Only at this wave were all students in each school asked to nominate their 

closest friends. While this cross-sectional snapshot is rich thanks to Add Health’s unparalleled data 

collection, it cannot capture dynamic aspects of friendship formation. The cross-sectional and observational 

nature of the data makes it further impossible to establish a causal direction, rendering the analysis entirely 

descriptive (An, Beauvile, and Rosche 2022). To give an example, the data does not allow me to 

discriminate whether students became friends because they took the same courses or whether they took the 

same courses because they are friends. Forward-looking students may even take specific courses to befriend 

specific peers. Therefore, the association between students’ course selections and socioeconomic 

segregation in their friendship networks measures the degree to which segregation is channeled through 

courses. It cannot fully disentangle whether courses constitute exogenous structural constraints or 

endogenous paths through which students realize a preference to be among socioeconomically similar 

peers. Such a preference could drive the impact of extracurricular activities on socioeconomic segregation 

to some extent since students choose sports teams and clubs at their discretion. In contrast, the impact of 

course selections and neighborhoods is more likely to reflect how structural barriers shape socioeconomic 

segregation since students have less control over the courses they take and little control over where they 

live. Overall, however, the measured impact of stratified settings in high school likely underestimates the 

true impact of structural constraints on socioeconomic segregation. The reason is that this analysis does not 

capture how stratified settings in primary and middle school shape socioeconomic segregation in friendship 

networks that then carries over to high school. What the analysis does capture is the degree to which 

socioeconomic segregation in high school is associated with socioeconomic segregation in neighborhoods, 

courses, and extracurricular activities.  

Second, SES homophily and aspiration are residual tendencies and thus inferred, not stated preferences. 

They measure the excess probabilities of same- and cross-SES ties, net of the effect of residential proximity, 
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course and extracurricular selections, homophily and aspiration on correlates of SES, and relational 

mechanisms. Even though I took great care to include the most important drivers of socioeconomic 

segregation in the analysis, correlated unobserved mechanisms will also be captured by these terms. For 

instance, friends who no longer take the same courses and extracurricular activities but are friends because 

they shared social settings before will register as SES homophily. Further, SES homophily may also capture, 

for instance, parental preferences (Zwier and Geven 2023) or homophily based on personality traits that are 

correlated with SES background (Hughes et al. 2021). It depends on researchers’ definition of SES whether 

to consider this a confounding or mediating relationship. 

Third, Add Health contains many missing data points (but some attributes are more affected than 

others). I employ multiple imputation to address the issue. While this approach reduces bias and increases 

power vis-à-vis listwise deletion, it cannot be ruled out that measurement error attenuates effect estimates 

to some extent. It seems unlikely, however, that the results are significantly impacted by measurement error 

because missingness is partly design-induced (i.e., mechanisms are known), nonmissing data are measured 

precisely (e.g., residential proximity is based on exact locations, course selections are sourced from 

students’ transcripts), and because both variables with fewer (e.g., extracurricular activities) and with more 

missing values (e.g., courses) display robust effects on friendship formation. 

Fourth, the Add Health survey dates back to 1995. While more recent high school friendship network 

data is available (e.g., PROPSER), they are regional samples that preclude demographic analyses of high 

generalizability like this one. The truth is that Add Health remains the only nationally representative study 

in the United States that is publicly available and contains sociometric information. Similarities between 

the results from this study and Chetty et al. (2022b) suggest that socioeconomic segregation in friendship 

networks may not have changed much over time. Smith et al. (2014) examine change in network segregation 

between 1985 and 2004 using egocentric network data and find little change over time.  

Fifth, this study averages across heterogeneities by school type, composition, and region, to name just 

a few contextual variables (McFarland et al. 2014). Prior studies show that segregation patterns depend on 
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contextual variables like schools’ demographic composition (Moody 2001) or the consolidation among 

demographic attributes (Zhao 2023). Due to the small sample sizes of 132 schools, however, Add Health is 

not particularly suited to examine how network segregation depends on the ecological context. As better 

data become available, the scope conditions of these results should be examined. 

DISCUSSION AND CONCLUSION 

A growing body of research in sociology and adjacent fields focuses on how networks and embedded social 

capital affect social inequality (Blau 1977; Lenkewitz 2023; Lin 2000; Simmel 1908; van Tubergen and 

Volker 2014; Young, Park, and Feng 2024). A core finding of this line of research is that social 

embeddedness consolidates rather than alleviates inequality when networks are socioeconomically 

segregated. The determinants of socioeconomic segregation in networks are therefore important 

antecedents of the link between networks and inequality.  

This study examines the mechanisms underlying socioeconomic segregation in friendship networks in 

high school. It addresses a key puzzle raised in Chetty et al. (2022b), who identify greater SES homophily 

in high school friendship networks than prior studies: What is behind this friending bias? A well-developed 

literature in sociology on the determinants of racial segregation provides answers. This research highlights 

the importance of structural barriers, such as neighborhoods (Mouw and Entwisle 2006), courses (Frank et 

al. 2013), and extracurricular activities (Schaefer et al. 2018), as well as intentional and unintentional 

boundary-making between groups with intersecting attributes (Alba 2005; Moody 2001; Wimmer 2013; 

Zhao 2023).  

I integrate these disparate perspectives in this study to disentangle their relative contributions to 

socioeconomic segregation. Using data from the National Study of Adolescent Health and a new 

exponential random graph modeling approach, this study provides a deeper understanding of the degree 

and patterns of socioeconomic segregation and the processes that create it.  

In the following, I summarize the results to highlight contributions to the literature and to inform 

interventions to reduce socioeconomic segregation in friendship networks.  
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Degree and patterns of socioeconomic segregation  

The results of this study show that socioeconomic segregation in high school friendship networks is 

characterized by unilateral exclusion of students in the bottom third and closure among students in the upper 

half of the SES distribution. While friendship networks are overall less socioeconomically segregated than 

they are racially segregated, the exclusion of low-SES students from high-SES cliques is pronounced. High-

SES students are 18 percent less likely to befriend low-SES peers than if they selected friends at random, 

which compares to 20 percent for interracial ties on average. Moreover, while racial segregation is marked 

by mutual exclusion, socioeconomic segregation is asymmetric in that many friendship ties from low-SES 

students to peers with higher SES backgrounds remain unreciprocated. This difference between 

socioeconomic and racial segregation is concealed in studies that examine only reciprocated ties. These 

results imply that interventions to reduce socioeconomic segregation should focus on the friending behavior 

of students in the upper half of the SES distribution as their friendship choices drive socioeconomic 

segregation. Students are also more segregated with respect to parental education and occupation than with 

respect to parental income. Socioeconomic segregation in high school friendship networks will thus not be 

captured adequately when students’ socioeconomic background is equated with parental income, as is 

increasingly common (Barone, Hertel, and Smallenbroek 2022).  

This study and Chetty et al. (2022b) identify a greater degree of socioeconomic segregation than prior 

work. Measurement differences are the likely reason for the divergent conclusions. Prior work reduces 

socioeconomic mixing to dichotomous indicators (e.g., Malacarne 2017) and linear measure of SES 

distance between peers (e.g., McMillan 2022), which masks the unilateral and nonlinear pattern to some 

extent. I replicated the analyses by Chetty et al. (2022b) with Add Health and find that friendship networks 

in the Add Health schools are more segregated than friendship networks on Facebook. This result also 

points to measurement differences for the divergent conclusions and adds to research showing that offline 

(core) friendship networks are more segregated than online (extended) friendship networks (DiPrete et al. 

2011; Hofstra et al. 2017). 
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Determinants of socioeconomic segregation 

The decomposition analysis identifies that parents’ choices on where to live and which school to enroll their 

children produce disparities in the SES composition between schools that account for about 50 percent of 

the total segregation. This result is in line with Chetty et al. (2022b), who also attribute 50 percent to 

exposure differences between schools (based on 80,000,000 Facebook friends). The other half is determined 

by processes within schools, which Chetty and colleagues subsume under “friending bias” due to their lack 

of data to disentangle them. In the main analysis of this paper, I move beyond friending bias as a singular 

concept and disentangle four key determinants of socioeconomic segregation within schools: stratified 

settings, homophilous tendencies, popularity differences, and relational mechanisms. The results are 

discussed in the following. 

Stratified settings. Stratified courses, extracurricular activities, and neighborhoods account for about 

25 percent of the total socioeconomic segregation within schools. Socioeconomic segregation in high 

school is therefore not only the result of friending bias but also institutional bias in the structures in which 

students are embedded. The main institutional constraint to integrated friendship networks are stratified 

courses. Eliminating academic tracking would thus not only promote educational equality (Rui 2009) but 

likely also increase socioeconomic integration in friendship networks. Prior research speculates that 

extracurricular activities, such as sports teams, may constitute settings in which students from diverse 

backgrounds can become friends (Lessard and Juvonen 2019; Malacarne 2017). Chetty et al. (2022b) show 

that this is not the case for recreational groups outside of school. The results presented here indicate that 

this is also not the case for extracurricular activities within school. Overall, sports teams and clubs are as 

stratified as the school itself.12 Proximity effects on friendship formation can thus only be leveraged to 

reduce socioeconomic segregation if we enable and encourage disadvantaged youth to take advanced 

courses and participate in extracurricular activities.13 Finally, while parents’ residential choices shape 

differences in SES composition between schools, residential proximity does not contribute to 

socioeconomic segregation in friendship networks within schools.14  
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Student preferences. Students’ preference to befriend similar peers (homophilous tendencies) and their 

preference to befriend peers with greater characteristics than themselves (aspirational tendencies) account 

for about 75 percent of the total socioeconomic segregation within schools. Note that this study only 

captures revealed preferences (i.e., residual tendencies net of other modeled mechanisms) since preferences 

were not directly measured. However, their large impact certainly suggests that socioeconomic segregation 

in high school is not only driven by structural constraints – as McFarland et al. (2014) suggest – but also 

by students’ agency. 

Students’ preference to befriend same-race peers make up most of this impact. Therefore, while racial 

segregation is not a by-product of SES homophily (Moody 2001; Zeng and Xie 2008), socioeconomic 

segregation in friendship networks is in important ways a by-product of racial homophily. Despite 

contributing to socioeconomic segregation overall, the effect of racial homophily is ambiguous, however. 

It induces closure among low-SES students of the same race but, at the same time, reduces their exclusion 

by same-race peers in the upper half of the SES distribution. Therefore, educators aiming to implement 

programs to foster interracial friendships must be alert to potentially unintended consequences. If programs 

were to replace cross-SES ties within racial groups with same-SES ties between them, they would 

unintentionally strengthen socioeconomic boundaries.  

This study also provides evidence for socioeconomic preferences, teasing apart homophilous and 

aspirational tendencies (An 2022; An and McConnell 2015; Homans 1961; Laumann 1965; Malacarne 

2017). The results indicate that low- and medium-SES students prefer to befriend high-SES peers 

(aspiration) whereas high-SES students prefer to befriend other high-SES peers (homophily). These 

tendencies suggest an overlap of social and socioeconomic status in high school and contrast with students’ 

racial preferences that largely reflect homophilous tendencies. These effects do not constitute direct 

evidence of intentional socioeconomic segregation, but they certainly invite future research to examine the 

drivers underlying these residual tendencies. Comparable analyses in European secondary schools find little 

evidence for socioeconomic preferences of students net of other modeled mechanisms (Chabot 2024; 
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Lenkewitz 2023; Zwier and Geven 2023). More so than ethnoracial homophily for which there is ample 

evidence in Europe, the existence of SES homophily therefore seems to depend on the institutional and 

cultural context.15 Further, students’ socioeconomic preferences have an ambivalent impact on 

socioeconomic segregation. While SES homophily among high-SES students increases closure among 

them, their popularity integrates friendship networks from below by fostering low→high and med→high 

ties. These aspirational tendencies, however, fail to truly reduce socioeconomic segregation because high-

SES students leave many of these friendship overtures unreciprocated, creating the asymmetry 

characteristic of socioeconomic segregation in high school.  

Finally, there is little evidence to suggest that socioeconomic segregation depends on students’ 

preferences regarding peers’ academic performance. The reason is that average- rather than high-

performing students are most popular, breaking the link to socioeconomic segregation. 

Relational mechanisms. Tie-formation mechanisms that reflect students’ tendency to base friendship 

choices on already existing ties do not contribute much to socioeconomic segregation. Their effects on 

socioeconomic segregation are small, ambivalent, and offset each other, which contrasts with their sizable 

effects on friendship formation. Therefore, relational mechanisms must be modeled to accurately measure 

the effects of other modeled mechanisms. However, their effects on friendship formation do not translate 

into large effects on socioeconomic segregation. Unlike in Schelling’s (1971) classic model of residential 

segregation in which modest preferences are dynamically amplified, relational mechanisms increase local 

clustering with only minor effects on school-wide socioeconomic segregation. The reason is that students’ 

tendencies to reciprocate ties and to close open triads produce both same- and cross-SES ties. For 

reciprocity, the segregating impact predominates. In contrast, for triadic closure, the integrating impact 

prevails, challenging a long-held assumption that triadic closure amplifies network segregation (e.g., 

Goodreau, Kitts, and Morris 2009; Kossinets and Watts 2009; Tóth et al. 2021; Wimmer and Lewis 2010). 

Both mechanisms contribute to the exclusion of low-SES students from high-SES cliques, however. 

Therefore, to prevent clique-formation among high-SES students, teachers should change seating plans 
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regularly and have students with different SES backgrounds work together. In doing so,  reciprocity and 

balancing norms can help overcome homophilous tendencies of high-SES youth. 

In conclusion, bridges across racial and socioeconomic divides are important to sustain social cohesion 

as the US becomes more ethnoracially diverse and economically unequal (Alba and Maggio 2022). The 

results from this study reveal more socioeconomic mixing in high school than many may realize. For a 

majority of Americans, high school is a place where they befriend peers with diverse socioeconomic 

backgrounds, the evidence of socioeconomic segregation in their friendship networks notwithstanding. To 

fully achieve the promises of SES-integrated education, however, policymakers and educators should target 

socioeconomic disparities between schools, SES-stratified courses within schools, and students’ racial and 

socioeconomic preferences. The results show that racial homophily is behind much of what Chetty and 

colleagues identify as apparent SES homophily. Therefore, SES-integrated friendship networks in 

educational settings will be difficult to achieve without also addressing racial segregation.   
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NOTES 

1 See, among others, Bourdieu (1980); Coleman (1968); Crosnoe, Cavanagh, and Elder (2003); Davies et 

al. (2011); Lin (1999, 2000); Portes (1998). 

2 Studies examining the socioeconomic composition of classrooms and schools find negative effects of 

larger shares of low-SES students on the students’ academic performance. See van Ewijk and Sleegers 

(2010) for an overview. This compositional effect is associated with school funding, teacher quality, and 

classroom climate (Sciffer, Perry, and McConney 2020). Given a school’s socioeconomic composition, 

however, peer effect studies find no evidence that cross-SES friendships impact the academic performance 

of high-SES students. 

3 Homophily is the human tendency to befriend others similar to us. Note that the term is also used to 

describe homogeneity in networks (“induced homophily”), which is the outcome of homophily and other 

homogeneity-inducing mechanisms. I follow Wimmer and Lewis (2010) to define homophily as the 

individual preference (“choice homophily”) since “love of the similar” clearly refers to a preference and 

use homogeneity and assortativity to describe the network-level outcome.   

4 Goodreau et al. (2009) and Chabot (2024) find that triadic closure amplifies network segregation. 

However, the effect of triadic closure depends on whether open triads close regardless of whether the edge 

crosses group boundaries. Therefore, without interacting triadic closure and homophily, triadic closure is 

bound to have a segregating impact (Abebe et al. 2022; Block 2015, 2018; Grund and Densley 2015). 

Unfortunately, neither paper models this interaction. 

5 Robustness checks in which I choose different percentiles as cutoff points, differentiate the SES score into 

more than three categories, and examine the continuous SES score show that the results are not sensitive to 

this operationalization (see Appendix B). A typical low-SES student lives with one parent, who has a high 

school diploma, works in the service sector, and provides $28,000 in annual income (1994 dollars). A typical 

medium-SES student lives with two parents who have at least some college education, one of them works 

professionally, and the household income is $46,000. A typical high-SES student lives with two parents 

who have graduate degrees, work professional jobs, and the household income is $65,000. 

6 In the same way, I measure segregation with respect to race, gender, GPA, language spoken at home, and 

parental education, occupation, and income. The cutoff points for ordinal and continuous variables are as 

follows: parental education (low: ≤high school, med: some college, high: ≥college degree), parental 

occupation (three-group EGP class schema), parental income and GPA (tercile cutoff points). 

7 The maximum value of S depends on the expected proportion. The maximum value could be restricted to 

1 for πt
obs > πt

exp
 using St

∗ = (πt
obs − πt

exp
) (1 − πt

exp
)⁄ . This measure, however, is less intuitively 

interpretable and gives more weight to variables that exhibit high expected proportions.  

8 In a robustness check (see Appendix C5), I measure the impact of each mechanism by switching it off 

while keeping all other mechanisms switched on. This approach gives similar results with some nuances. A 

disadvantage of this approach is that contributions do not sum up (i.e., ∑τθk ≠ π̂t
M3,full − π̂t

M3,empty
) because 

relational mechanisms amplify all but the absent mechanism and because mechanisms compensate for each 

other due to intercorrelations. 

9 Chetty and colleagues measure socioeconomic segregation as the absence of peers with an above-median 

(high) SES background among the friends of students with a below-median (low) SES background. I find 

that, in the Add Health networks, high-SES peers are underrepresented in friendship networks of low-SES 

students by 16 percent, which is more than they report (11 percent).  

10 Comparing this result to Figure 4 shows that schools in the saturated subsample (sample 2) are about as 

socioeconomically segregated as schools overall (sample 1). 
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11 The friendship formation model shows that homophily on a subracial level reduces but does not absorb 

the effect of racial homophily on friendship formation.  

12 Schaefer et al. (2018) find that extracurricular activities do not reduce racial segregation in friendship 

networks either. In contrast, Malacarne (2017) finds extracurricular activities to be positively associated 

with cross-SES interaction with the same data but using logistic regression. The divergent conclusions 

highlight the limits of using dyadic models to parse determinants of network structure characteristics. 

13 Giancola & Kahlenberg (2016) find that low-SES students are less likely to take advanced courses even 

when grades would allow them. Pedersen and Seidman (2005) show that they are less likely to participate 

in extracurricular activities. 

14 This result is in line with Mouw and Entwisle (2006), who find that the “bus stop” effect does not affect 

the racial segregation in high school friendship networks very much either. 

15 The presented results contrast with evidence from European secondary schools in another way. Figure 5 

indicates that high-SES students are more likely than their low-SES peers to form interracial ties net of 

meeting opportunities. High-SES students in the Netherlands, in contrast, are less likely than their high-

SES peers to form interethnic ties net of meeting opportunities (Damen, Martinović, and Stark 2021).   
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CONCLUSION 

Explaining how macro-level outcomes emerge from their constituting parts at the micro-level is a complex 

undertaking. In empirical research, however, statistical methods that feature trivial aggregation functions 

dominate because methods to study more complex aggregation processes remain underdeveloped. In this 

thesis, I contribute to the development of empirical-statistical methods for the study of micro-macro links. 

The developed approaches complement analytical-theoretical methods to study aggregation processes, such 

as agent-based modeling and game theory. An advantage of the developed empirical approaches is that they 

confront modeled mechanisms with empirical data, which facilitates assessing their relevance, validity, and 

generalizability. Due to the niche status of computational and mathematical modeling in sociology, 

empirical methods may also facilitate a more widespread investigation of micro-macro links. The empirical 

insights derived from these methods demonstrate their potential. 
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SUPPLEMENTARY MATERIAL CHAPTER 1 

APPENDIX 1: R LIBRARY “INEQX” 

With this paper, I provide the R library ineqx to facilitate research using the variance decomposition 

approach. The library implements both descriptive and explanatory variance decomposition. Researchers 

can decide between decomposing the V and the CV2. The library allows decomposing effects (i) at a single 

timepoint, (ii) effects across time relative to a specific time point, and (iii) across time relative to a 

counterfactual scenario. Scenarios can be based on counterfactual group sizes, pre-treatment inequality, and 

treatment effects on the mean and variance. 

Treatment effects on the group-specific means and variances can be estimated either inside or outside 

the library. Inside the library it is possible to estimate and decompose treatment effects conveniently in one 

single command. The simple difference estimator and the difference-in-difference estimator are 

implemented using the generalized additive model for location, scale and shape (GAMLSS) as framework 

(Rigby and Stasinopoulos 2005). GAMLSS uses maximum penalized likelihood to estimate model 

coefficients, which is noticeably faster than the Bayesian Markov chain Monte Carlo estimation used in 

prior research, especially on larger datasets, such as the Current Population Survey. Estimating treatment 

effects outside the library allows researchers to draw on novel estimation strategies. The library is then 

simply used to decompose the estimated treatment effects into within- and between-group components.  

 

The R-code to perform a descriptive decomposition is: 

ineqx(y="inc", ystat = "CV2", group = "SES", time = "year", ref=1980, dat)  

 

The R-code to perform an explanatory decomposition is: 

ineqx(treat="mother", post="birth", y="inc", ystat = "CV2", decomp = "effect",  

      group = "SES", time="year", controls = c("race", "edu"), ref=1980, dat) 

 

Instead of a reference time, reference values can be provided, e.g., ref=list(beta=c(0,0,0), 

lambda=c(0,0,0)).
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APPENDIX 2: DERIVATIONS 

A2.1 Equation 2 

With repeated cross-sectional or panel data, the change in the variance from t0 (baseline) to t (any timepoint post baseline) can then be decomposed into 

the sum of a within-group effect (δW), a between-group effect (δB), and a compositional effect (δC) as detailed in equation (2) by adding and subtracting two 

components: 

Vt − Vt0 = ∑ πjt(μjt − μ̅t)
2

j + ∑ πjtσjt
2

j − (∑ πjt0(μjt0 − μ̅t0)
2

j +∑ πjt0σjt0
2

j ) +
∑ πjt0(μjt − μ̅t)

2
j − ∑ πjt0(μjt − μ̅t)

2
j⏟                        

= 0
+
∑ πjt0σjt

2
j − ∑ πjt0σjt

2
j⏟            

= 0
  

                = δB
T + δW

T + δC
T, where μ̅t = ∑ πjtμjtj  and 

δW
T = ∑ πjt0(σjt

2 − σjt0
2 )j   

δB
T = ∑ πjt0 ((μjt − ∑ πjtμjtj )

2
− (μjt0 −∑ πjt0μjt0j )

2
)j   

δC
T = ∑ (πjt − πjt0) ((μjt − ∑ πjtμjtj )

2
+ σjt

2)j .  

The same decomposition for the squared coefficient of variation can be better expressed in functional form: 

CVt
2 − CVt0

2 =
∑ πjt(μjt − μ̅t)

2
+ ∑ πjtσjt

2
jj

μ̅t
2 −

(∑ πjt0(μjt0 − μ̅t0)
2

j + ∑ πjt0σjt0
2

j )

μ̅t0
2 = δW

T + δB
T + δC

T 

where 

δW
T = W(πjt, μjt, σjt

2) −W(πjt0 , μjt0 , σjt0
2 ) 

δB
T = B(πjt, μjt) − B(πjt0 , μjt0) 

δC
T = W(πjt, μjt, σjt

2) −W(πjt0 , μjt, σjt
2) + B(πjt, μjt) − B(πjt0 , μjt) 

and W(π, μ, σ2) = ∑ πjσj
2

j μ̅2⁄  and B(π, μ) = ∑ πj(μj − ∑ πjμjj )
2

j μ̅2⁄  are the within- and between-group equation functions of the CV2 that take the 

parameters π = π1, … , πJ,  σ
2 = σ1

2, … , σJ
2, and μ = μ1, … , μJ as input. 

A2.2 Equation 5 

The change in the variance due to a treatment effect D on the mean and variance of each group at a single timepoint can be decomposed into a between-

group effect (δB
D) and a within-group effect (δW

D ): 
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V[Y(1)|D] − V[Y(0)|D] = δB
D + δW

D , where 

δB
D =∑ πj ((μj + βj −∑ πj(μj + βj)

j
)

2

− (μj −∑ πjμj
j

)

2

)
j

 

δW
D =∑ πj(σj + λj)

2

j
−∑ πjσj

2

j
=∑ πj(2λjσj + λj

2)
j

 

The same decomposition for the squared coefficient of variation: 

CV2[Y(1)|D] − CV2[Y(0)|D] = δB
D + δW

D , where 

δB
D =

∑ πj ((μj + βj − ∑ πj(μj + βj)j )
2
− (μj − ∑ πjμjj )

2
)j

μ̅2
 

δW
D =

∑ πj(2λjσj + λj
2)j

μ̅2
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A2.3 Equation 8 

With repeated cross-sectional or panel data, the change in the total variance from t0 (baseline) to t (any timepoint post baseline) due to change in the effect of 

treatment can be decomposed into the sum of a between-group (δB
D,T

), within-group (δW
D,T

) a compositional (δC
D,T

), and a pre-treatment effect (δP
D,T

): 

(V[Yt(1)|Dt] − V[Yt(0)|Dt]) − (V[Yt0(1)|Dt0] − V[Yt0(0)|Dt0]) 

= ∑ πjt ((μjt + βjt − ∑ πjt(μjt + βjt)j )
2
− (μjt − ∑ πjtμjtj )

2
+ (σjt + λjt)

2
− σjt
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2
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2
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2
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2
)jj⏟                                                                        
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, where 

δB
D,T = B(πt0 , μt0 + βt) − B(πt0 , μt0 + β0) 
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2
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2
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2 )  

The same decomposition for the squared coefficient of variation is possible using the same approach as in A2.1. The equations are not shown to conserve 

space. 
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A2.4 Decomposition of the change in post-treatment variance induced by the change in the effect of treatment on the variance 

V[Yt(1)|Dt] − V[Yt0(1)|Dt0]
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j
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The same decomposition for the squared coefficient of variation is possible using the same approach as in A2.1. The equations are not shown to conserve 

space.
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APPENDIX 3: APPLICATIONS 

Application 1 

 

Table A3.1: Decomposition of the change in the 𝐶𝑉2 

Year δW
D,T

 δB
D,T

 δC
D,T

 δT
D,T

 

1980 0 0 0 0 

1985 -0.240 0.036 -0.009 -0.213 

1990 -0.282 0.032 0.000 -0.250 

1995 -0.297 0.039 0.001 -0.257 

2000 -0.219 0.025 -0.006 -0.200 

2005 -0.224 0.037 0.002 -0.185 

2010 -0.201 0.048 0.035 -0.118 

2015 -0.257 0.053 -0.006 -0.209 

2020 -0.263 0.059 -0.047 -0.251 

 

 

Figure A3.1: Trends in the group-specific 𝐶𝑉2 
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Application 2 

Figure A3.2: Share of mothers in the final sample by economic strata over time  

 

 

The results of the explanatory variance decomposition depicted in Figure 7 are given by Table A3.2.  

Table A3.2: Decomposition of the change in the motherhood effect 

Year δW
D,T

 δB
D,T

 δC
D,T

 δP
D,T

 δT
D,T

 

1980 0.000 0.000 0.000 0.000 0.000 

1985 -0.001 0.018 0.002 -0.003 0.016 

1990 -0.012 0.022 -0.011 0.008 0.008 

1995 -0.061 0.014 -0.017 0.017 -0.047 

2000 -0.109 0.001 -0.015 0.056 -0.068 

2005 -0.098 0.025 -0.027 0.051 -0.049 

2010 -0.099 0.064 0.002 0.008 -0.025 

2015 -0.098 0.018 0.023 0.017 -0.041 

2020 -0.113 -0.012 0.015 0.028 -0.082 

 

To calculate how much inequality has changed over time due to the motherhood effect, I decompose 

the change in the post-treatment variance due to the motherhood rather than the motherhood effect itself. 

The results are shown by Table A3.3. Within-group inequality is about 11.5 percent higher in 2020 than in 

1980 because (1 −
0.113

0.87+0.113
) ∗ 100 ≈ 88.5, where −0.113 is the within-group effect in 2020, 0.87 +

0.113 is the post-treatment CVW
2  in 2020 without the within-group effect. The inequality-reducing within-

group effect, therefore, is 11.5 percent higher. The same calculation is done for δB
D,T and δT

D,T.  
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Table A3.3: Decomposition of the change in the post-treatment 𝐶𝑉2due to the motherhood effect 

Year δW
D,T

 δB
D,T

 δC
D,T

 δP
D,T

 δT
D,T

 CVW
2  CVB

2 CVT
2 

1980 0.000 0.000 0.000 0.000 0.000 1.50 0.17 1.63 

1985 -0.002 0.018 -0.018 -0.002 -0.003 1.18 0.21 1.36 

1990 -0.013 0.021 -0.020 0.023 0.011 1.08 0.19 1.25 

1995 -0.062 0.012 -0.033 -0.005 -0.088 1.05 0.22 1.24 

2000 -0.108 0.001 -0.027 0.181 0.046 1.30 0.21 1.42 

2005 -0.096 0.024 -0.039 0.069 -0.042 1.13 0.26 1.33 

2010 -0.099 0.063 -0.017 0.049 -0.004 1.00 0.26 1.20 

2015 -0.097 0.018 -0.055 0.153 0.018 0.92 0.26 1.14 

2020 -0.113 -0.011 -0.086 0.192 -0.017 0.87 0.25 1.09 

 

The results of the decomposition in reference to a zero-effect depicted in Figure 8 are given by Table A3.4. 

Table A3.4: Decomposition of the change in the post-treatment 𝐶𝑉2due to the motherhood effect in 

reference to a zero-effect 

Year δW
D,T

 δB
D,T

 δC
D,T

 δP
D,T

 δT
D,T

 CVW
2  CVB

2 CVT
2 

1980 0.009 0.009 0.000 0.000 0.018 1.50 0.17 1.63 

1985 -0.001 0.034 0.000 0.000 0.033 1.18 0.21 1.36 

1990 -0.004 0.029 0.000 0.000 0.025 1.08 0.19 1.25 

1995 -0.049 0.018 0.000 0.000 -0.031 1.05 0.22 1.24 

2000 -0.057 0.008 0.000 0.000 -0.050 1.30 0.21 1.42 

2005 -0.055 0.024 0.000 0.000 -0.031 1.13 0.26 1.33 

2010 -0.051 0.044 0.000 0.000 -0.007 1.00 0.26 1.20 

2015 -0.052 0.029 0.000 0.000 -0.023 0.92 0.26 1.14 

2020 -0.069 0.005 0.000 0.000 -0.064 0.87 0.25 1.09 

 

 

APPENDIX 4: REPLICATION OF WODTKE (2016) 

Wodtke (2016) uses the 1980 to 2010 waves of the GSS. The author provided me with the data and analysis 

files, allowing me to use the same analytical sample. The key variables of the analysis are individual 

earnings as outcome and social class (proprietors, independent producers, managers, and workers) as 

grouping variable. I refer the reader to the original paper for further details. Figure A4.1 shows that I am 

able to replicate the paper’s basic descriptives as the trends in the variance of log income match Figure 6 

and 7 in the paper (Wodtke 2016: 1402-3). Panel A of Figure A4.2 then shows that I am able to replicate 

the main decomposition results of Table 1 in which the variance of log income is decomposed (Wodtke 

2016: 1404). Finally, Panel B and C show the same decomposition but for the variance of income and the 

squared coefficient of variation. The figure indicates that the results are largely identical. Therefore, in the 
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case of Wodtke (2016), the choice between variance, variance of logarithms, or squared coefficient of 

variation would have not made a difference in interpretation. As the application the present paper shows, 

this might not hold in other applications. 

Figure A4.1: The trends in the 𝑉𝐿 match Figures 6 and 7 in the paper (Wodtke 2016: 1402-3) 

 

Figure A4.2: The decomposition results are the same for 𝑉, 𝑉𝐿, and 𝐶𝑉2. 
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SUPPLEMENTARY MATERIAL CHAPTER 2 

APPENDIX A1: 

ADVANTAGES OF USING BAYESIAN ESTIMATION TO FIT MULTILEVEL MODELS 

First, Bayesian estimation of multilevel models naturally accounts for uncertainty in the variance estimates 

while likelihood estimation treats variance estimates as fixed values. Moreover, Bayesian estimation 

provides variance estimates and plausible credibility intervals in cases where likelihood estimation would 

give zero variance estimates and no confidence intervals. The carried-out hypothesis tests are therefore 

more precise (Hodges 2014; Hox, Moerbeek, and van de Schoot 2017). Second, coalition government 

datasets cover the entire population of governments within a certain spatio-temporal frame. Frequentist 

statistics models sampling uncertainty even though there is none – the entire population is observed. 

Bayesian statistics, by contrast, is not based on sampling uncertainty but on a belief-based definition of 

uncertainty. Such a definition better conveys the nature of uncertainty in coalition outcomes, which is that 

they are realizations of a probabilistic process.  Third, the use of weakly informative priors can help identify 

this more complex model. 

APPENDIX A2: RMM PACKAGE 

The three-level multiple membership multilevel version of a Weibull proportional hazard model, which is 

employed in the application below can specified in the rmm package as follows: 

rmm(Surv(govdur, earlyterm) ~ 1 + majority + minimalwinning + 
    mm(id(pid, gid), mmc(findep), mmw(w ~ 1/offset(n)^exp(-(seatshare+hetero)))) +  
    hm(id=cid, type=FE), 
    family="Weibull", data=dat) 

In the mm() container, the multiple membership structure between parties and governments is specified in 

three steps. First, party and government ids must be given in id(). Second, party-level covariates can be 

included in mmc(). Third, the aggregation function can be specified in mmw(). The here shown functional 

form corresponds to equation 6. However, researchers can specify their own ideas in a flexible way. Mean 

aggregation, for instance, is specified by w ~ 1/offset(n).  Finally, in the hm() container it is specified 

that parties and governments are hierarchically nested in countries and that country fixed-effects shall be 

estimated.  
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APPENDIX A3: SIMULATION STUDY 

Simulation setup 

Rather than generating entirely artificial data, the simulation is based on the same datasets as the subsequent 

empirical application. In the simulation, I generate a linear and a survival outcome by manipulating the 

effect of three structural variables (xP, xG, xC) and three weight variables (zP, zG, zC) to those outcomes.  

Generating the linear and survival outcome 

The linear outcome, I generate by 

Yi
G = βGxi

G + ui
G + βCxC(i)

C + uC(i)
C + ∑

1

ni
exp(−{ρPzij

P+ρGzij
G+ρCzij

C})
(βPxij

P + uj
P)

j∈P(i)

 (1) 

The survival outcome is generated using the same linear predictor and the approach described by Bender et 

al. (2005) to sample survival times. Table 1 details the used variables and manipulated parameter values. 

The data generation process in equation (1) models the actual multilevel structure of coalition government 

data. In the simulation, I examine the consequences of ignoring this structure by comparing the performance 

of the SLM vis-à-vis the MMMM in recovering the true effect of the structural variables (i.e., β̂P, β̂G, β̂C) 

when increasing: 

(i) similarity of observations at the party level (i.e., variance of the random effect 𝜎
𝑢𝑃
2 ) 

(ii) number of multiple memberships m (i.e., # of parties’ government participations over time) 

(iii) interdependencies in the aggregation process (i.e., effects of weight variables 𝜌). 

I specify βP = βG = βC = 1 to examine bias and power and βP = βG = βC = 0 to assess the false 

positive rate. To separate the consequences of clustering and interdependencies, the weight coefficients 

(ρP, ρG, ρC) are set to 0 when assessing the consequences of party-level clustering (i.e., increasing (i) + (ii)). 

Conversely, party-level clustering (σ
uP
2 ) is set to 0 when examining the consequences of ignoring 

interdependencies in the aggregation process (i.e., increasing (iii)). 

In total, I examine 33 simulation conditions (i.e., combinations of parameter values) and run each condition 

10,000 times. The SLMs are estimated with maximum likelihood and the MMMMs are estimated with 

Bayesian MCMC.   
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Table A1.1: Parameters that are manipulated in the simulation 

Level Variable type Variable name Parameter values 

Party Structural  xP: Parties’ financial dependency on members βP = {0,1} 

N=194 Weight  zP: Parties’ relative seat share in government  ρP = {-5,-2,0, 2,5} 

 Clustering Similarity of obs. (variance of random effect) 

Number of multiple memberships 

σ
uP
2 = {0,0.1,1,2,4} 

m = {1,2, 4, act. distr.} 

Gov. Structural xG: Majority status βG = {0,1} 

N=401 Weight 𝑧G: Governments’ ideological heterogeneity ρG = {-5,-2,0, 2,5} 

 Disturbance  σ
uG
2 = 0 

Country Structural xC: Investiture requirement  βC = {0,1} 

N=18 Weight zC: Prime ministerial powers ρC = {-5,-2,0, 2,5} 

 Clustering Similarity of obs. (variance of random effect) σ
uC
2 = 0 

 

A comment on the mixture of frequentist and Bayesian estimation 

I estimate the MMMM in a Bayesian way because Bayesian estimation of multilevel models offers several 

attractive features, which are detailed in the paper in section 3.4. By contrast, I mainly employ maximum 

likelihood estimation for the SLM to reduce the overall duration of the simulation. In line with objective 

Bayesian statistics (Berger 2006), I then examine the frequentist properties (Type-I and II error rate) of the 

MMMM and compare it to the SLMs, which are estimated in a frequentist way. This is useful because the 

Type-I error rate of Bayesian models is not known a priori (as compared to the frequentist promise of 5% 

over the iterations of the simulation when setting the nominal 𝛼 to 0.05) (Gelman and Tuerlinckx 2000). I 

decided not to make the Bayesian paradigm center stage of this paper to be able to focus on the advantages 

of the multilevel approach. In the future, I might add other estimation algorithms to the rmm package. 

Manipulating (i), (ii), and (iii) 

(i) I draw party-level random effects from a normal distribution uj
P~N(0,σuP

2 ) and vary the variance σ
uP
2  

from 0 to 4 to assess the impact of increasingly similar observations at the party level. The random 

effects at the government and country level are set to 0. 

(ii) The number of observations at the party level equals the sum of the number of times each party has 

been in government. I manipulate the number of multiple memberships m (i.e., parties’ participations 

in government) by giving each party m observations. By giving all parties the same number of 

observations, m can be varied in a reasonably straightforward way. The only difficulty lies in keeping 

the number of observations at the party level constant. To achieve that, I only use as many observations 

as actually observed at the party level of the generated data. The approach is not perfect as it assigns 

each party the same number of observations and does not always use all generated data. I chose this 

approach nonetheless because other, more complex approaches that I considered were not successful 
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in varying m in a controlled way. I also use the actually observed distribution of parties’ participations 

in government as simulation condition.  

(iii)  To examine the of bias owing to party-level clustering (i.e., increasing (i) and (ii)), I keep 𝝆 = 𝟎. To 

create interdependencies in the aggregation process, I vary the weight regression coefficients ρP, ρG, ρC 

from -5 to 5. 

Simulations conditions 

If I would take the full factorial of parameter values, I would end up with more than 1000 simulation 

conditions. To keep the simulation study accessible, I therefore combine conditions where it makes sense: 

− To analyze the impact of the variance of the party-level random effect on the structural regression 

coefficients, I create 5 x 2 = 10 simulation conditions. The conditions are just the factorial of parameter 

values of σ
uP
2  and β if βP, βG, βC are varied together, ρP, ρG, ρC = 0, m equals the actual distribution, 

and σ
uG
2 = σ

uC
2 = 0. 

− To analyze the impact of the number of multiple memberships m on the structural regression 

coefficients, I create 4 x 2 = 8 simulation conditions. The conditions are just the factorial of parameter 

values of m and β if βP, βG, βC are varied together, ρP, ρG, ρC = 0, σ
uP
2 = 1, and σ

uG
2 = σ

uC
2 = 0. 

− To analyze the impact of the weight predictors, I create 5 x 3 = 15 simulation conditions. That is, I first 

vary ρP and keep βP, βG, βC = 1, ρG, ρC = 0, and σ
uP
2 = σ

uG
2 = σ

uC
2 = 0. Then, I do the same with ρG 

and ρG. I set the variances of the random effects to zero to separate the impact of party-level clustering 

from the impact of party-level interdependencies.  

Therefore, the total number of simulation conditions is 33. 

Models 

− SLMs: I estimate two SLMs, one at the party level and one at the government level. I use the mean to 

aggregate the party-level variables to the government level. For the linear outcome, I use the lm_robust 

command from the estimatr package. For the survival outcome, I use the survreg(…, family=“Weibull”, 

robust=T) command from the survival package.  

− MMMMs: I estimate two MMMMs using the rmm package – one in which I specify a weight function 

that depends on the weight covariates, and one in which I use the mean as aggregation function.  

Number of iterations and estimation 

I run each model in each condition 1,000 times. I use Bayesian MCMC to estimate the MMMMs and 

maximum likelihood to estimate the SLMs. The MMMM model is run with 2,000 MCMC iterations and 5 

chains. Since the ground truth is known in the simulation, I can show that this number is more than is 

enough to converge to the posterior distribution. Figure A1.1 illustrates that it takes the Gibbs sampler less 



 

 

137 

 

than 10 steps to converge to the true parameter value of 1. The entire simulation (32 conditions x 4 models 

x 1,000 iterations of the simulation) takes about a week on a server with 15 cores.  

Figure A1.1: Convergence of the party-level regression coefficient.  

The true value is 1, which is approached in less than 10 steps. 

 

Criteria of evaluation 

The criteria for evaluation are (i) bias in the regression coefficient, (ii) bias in the uncertainty estimate, (iii) 

root mean squared error (RMSE), and (iv) percent of the RMSE that is caused by bias in the regression 

coefficient, (v) percent true positive (power), and, finally, (vi) percent false positive. 

(i) The bias in the regression coefficient is defined as (β̅̂ − β) β⁄ × 100 , where β is the true parameter 

value used to generate the data sets and β̅̂ is the average estimate over the simulated datasets. It 

illustrates how much the parameter estimates deviate from their true values in percent. Note that the 

regression coefficients of the frequentist models are maximum likelihood estimates and the regression 

coefficients of the Bayesian models are means of the posterior distribution.  

(ii) The bias in the uncertainty estimate is given by (sd̂(θ) − sd(θ̂)) sd(θ̂)⁄ × 100, where sd(θ̂) is the 

actually observed standard deviation of the estimated regression coefficients across the simulated 

datasets and sd̂(θ) is the average standard deviation of the estimated posterior distributions for the 

Bayesian models and the average estimated standard errors for the frequentist models. Note that this 

analysis does not require the standard deviation of the posterior to equal the standard error. This statistic 

measures whether the models correctly estimate uncertainty. For the frequentist models, the variation 

across the simulated datasets should equal the average standard error by design. For the Bayesian 

models, the standard deviation of the posterior should reflect the variation across the simulated datasets 

to have good frequentist properties.  
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(iii) In addition to unbiasedness, accuracy is another desirable feature of estimators since it results in 

narrower confidence intervals and consequently higher power in statistical tests. The mean squared 

error is an overall measure of accuracy which considers both bias and standard deviation of the 

estimated parameters. The root mean squared error (RMSE) returns to the original scale of the 

parameter and therefore measures the spread of the estimates around the true value. The RMSE is 

defined as RMSE = √(𝜃̄ − 𝜃)2 + 𝑠𝑑(𝜃)2. 

(iv)  I also report the percent of the RMSE that is caused by bias in the regression coefficient. That is, the 

degree to which the RMSE is caused by its first element (𝜃̄ − 𝜃)2. I do this because the simulation 

indicates that SLM and MMMM sometimes exhibit similar levels of RMSE. Using this measure, I can 

show that this is because, in some cases, the MMMM is less accurate than the SLM but the SLM is 

more biased. 

(v) The power is estimated as the proportion of simulated datasets for which the 95% confidence interval 

(frequentist models) / 95% posterior credible interval (Bayesian models) does not include zero and 

βP = βG = βC = 1. 

(vi) The false positive rate is estimated as the proportion of times the 95% confidence interval (frequentist 

models) / 95% posterior credible interval (Bayesian models) does not include zero even though βP =

βG = βC = 0. 

Results: Party-level clustering 

Figure A1.2 illustrates the simulation output for a linear outcome. The figure displays the distribution of 

regression coefficient estimates β̂ and their uncertainty estimates sd̂(θ) under increasing party-level 

clustering σ
uP
2  by model type. The first row depicts the mean and standard deviation of the estimated 

regression coefficients across simulations at the party, government, and country level. The second row 

shows the estimated uncertainty – the average standard error of the SLMs, and the average standard 

deviation of the estimated posterior distribution of the MMMM. Ideally, the estimated uncertainty in the 

second row equals the actual uncertainty displayed in the first row. 

The figure indicates that both SLM and MMMM estimate regression coefficients without bias in the 

linear case. The SLM, however, is less accurate as the standard deviation of regression coefficient estimates 

across simulation runs (blue shades in the first row) is wider. Moreover, the SLM underestimates this 

uncertainty, which is visible in the second row. Even though it is in fact less accurate, the SLM estimates 

that it is more accurate than the MMMM. That is, it the uncertainty estimates are biased towards zero. 

Rather than presenting the raw output for all simulation conditions, Table A1.2 and Table A1.3 presents 

the results in evaluated form. Table A1.2 presents the results when increasing party-level clustering and 

Table A1.3 presents the results when increasing the number of multiple memberships. 
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Figure A1.2: Distribution of regression coefficients and uncertainty estimates across the iterations of the 

simulation for a linear outcome. 

 

Linear outcome. As mentioned in the paper, the regression coefficients (𝛽̅̂) are unaffected by the 

presence of party-level clustering (𝜎
𝑢𝑃
2 ) and multiple membership (𝑚) in the linear case. The uncertainty 

estimates 𝑠𝑑̂(𝜃), however, are affected. The SLM underestimates the standard errors considerably. The 

pattern in Table A1.2 and Table A1.3 indicates that the degree of similarity at the party level is less important 

than the number of multiple memberships. This is the reason why the bias in SLM is so pronounced – the 

number of multiple memberships in coalition government data is high (see Figure 3 in the paper). The 

MMMM estimates the posterior standard deviation at the party level without bias and has a small positive 

bias at the government and country level. For very small 𝑠𝑑(𝜃), the percent bias will be large even though 

the absolute bias is negligible. Therefore, whenever the bias is very small in absolute magnitudes and the 

associated percent bias would be misleading, I report sign of the bias (−/+) rather than the percent bias. 

The RMSE shows that the MMMM is more accurate than the SLM, particularly for government-level 

variables.   

Survival outcome. In the survival case, both regression coefficients and standard errors are affected by the 

party-level clustering. Tables A1.2 and A1.3 show that the SLM underestimates both. Some SLMs had 

convergence issues during the simulation. I mark cells for which I did not obtain a result by a “∙”. Looking 

at the RMSE, we can see that the MMMM is less accurate for country-level effects on the employed dataset 

(which features only 18 countries). The RMSE considers both bias and standard deviation of the estimated 

parameters and can be interpreted as the spread of the estimates around the true value. The results reveal 
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that even though SLM and MMMM in some cases (country-level effects!) are equally imprecise, the source 

of this imprecision is different for the two models. The percentage of the RMSE due to the bias in the 

regression coefficient indicates that the SLM is imprecise because it is biased while the MMMM is 

imprecise when the sample size is small and thus the variance of the estimator surges. 

Interpreting coefficients at the government level that were estimated at the party level  

Figures A1.3- A.15 show that interpreting coefficients at the government level that were estimated at the 

party level leads to incorrect inference. This is the case irrespective of whether there is party-level clustering 

and multiple memberships. On the x-axis, the figures show the true regression coefficient, and on the y-

axis, they show the estimated effect. The solid line gives the coefficient when estimated at the party level 

and the dashed line gives the coefficient when estimated at the government level. Figure A1.3 varies the 

true party-level regression coefficient and keeps the government- and country-level coefficient equal to 1. 

Figure A1.4 varies the true government-level regression coefficients. Finally, Figure A1.5 varies the true 

country-level coefficient.  

The bias follows a clear pattern. Figure A1.3 shows that party-level coefficients will be overestimated 

if the true effect is positive and underestimated when the true effect is negative. Importantly, not only the 

party-level coefficients are affected when a model including variables at all three levels. Government-level 

coefficients will also be overestimated if the party-level effect is positive and underestimated when the 

party-level effect is negative. Country-level coefficients show the opposite behavior. As mentioned in the 

paper, the standard errors will generally be too low when using party-level data.  

Figure A1.3 and Figure A1.4 show that estimating government- and country-level effects on party-level 

data induces less bias. However, standard errors are likewise underestimated. The imprecision visible in 

Panel A and B of Figure A1.4 are probably because the dataset only includes 18 countries.
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Table A1.2: The consequences of increasing party-level clustering 

 Level Model 

% Bias 𝛽̅̂ % Bias in 𝑠𝑑̂(𝜃) RMSE (same scale as 𝛽) Bias RMSE⁄  (in %) 

Party-level clustering 𝜎
𝑢𝑃
2  Party-level clustering 𝜎

𝑢𝑃
2  Party-level clustering 𝜎

𝑢𝑃
2  Party-level clustering 𝜎

𝑢𝑃
2  

0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4 

L
in

ea
r 

Party 
SLM 0 0 0 0 0 -74 -74 -74 0 0.01 0.02 0.04 0 0 0 0 

MMMM 0 0 0 0 0 0 0 0 0 0.01 0.01 0.03 0 0 0 0 

Government 
SLM 0 0 0 0 0 -58 -58 -58 0.01 0.16 0.32 0.65 0 0 0 0 

MMMM 0 0 0 0 0 + + + 0.02 0.02 0.03 0.03 0 0 0 0 

Country 
SLM 0 0 0 0 0 -76 -76 -76 0.01 0.24 0.47 0.95 0 0 0 0 

MMMM 0 0 0 0 0 + + + 0.04 0.21 0.40 0.77 0 0 0 0 

S
u

rv
iv

al
 

Party 
SLM 0 -11 -35 -56 0 -43 -46 . 0.04 0.18 0.35 0.59 3 40 98 99 

MMMM 0 0 0 0 0 + + + 0.06 0.06 0.06 0.07 0 0 0 0 

Government 
SLM 0 -15 -33 -56 0 -22 -13 . 0.13 0.24 0.42 0.64 0 36 61 76 

MMMM 0 0 0 0 0 + + + 0.16 0.19 0.22 0.25 0 0 0 0 

Country 
SLM 0 -11 -33 -57 0 -41 -44 . 0.11 0.24 0.45 0.69 0 22 54 69 

MMMM 0 0 0 0 0 + + + 0.99 0.97 1.05 1.32 0 0 0 0 

 

Table A1.3: The consequences of increasing multiple memberships 

 Level Model 

% Bias 𝛽̅̂ % Bias in 𝑠𝑑̂(𝜃) RMSE Bias RMSE⁄  

Multiple memberships m Multiple memberships m Multiple memberships m Multiple memberships m 

1 2 4 A 1 2 4 A 1 2 4 A 1 2 4 A 

L
in

ea
r 

Party 
SLM 0 0 0 0 -3 -16 -26 -74 0 0 0.01 0.01 0 0 0 0 

MMMM 0 0 0 0 + + + + 0 0 0 0.01 0 0 0 0 

Government 
SLM 0 0 0 0 3 -1 -13 -58 0.07 0.09 0.12 0.16 0 0 0 0 

MMMM 0 0 0 0 + + + + 0.07 0.09 0.02 0.02 0 0 0 0 

Country 
SLM 0 0 0 0 -1 -7 -24 -76 0.06 0.08 0.12 0.24 0 0 0 0 

MMMM 0 0 0 0 + + + + 0.07 0.09 0.09 0.21 0 0 0 0 

S
u

rv
iv

al
 

Party 
SLM -15 -21 -26 -11 . . -79 -43 . . 0.27 0.18 . . 98 39 

MMMM 0 0 0 0 0 + + + 0.12 0.13 0.10 0.06 0 0 0 0 

Government 
SLM -14 -22 -24 -15 . . -21 -22 . . 0.31 0.24 . . 77 35 

MMMM 0 0 0 0 0 + + + 0.26 0.29 0.25 0.19 0 0 0 0 

Country 
SLM -12 -19 -24 -11 . . -20 -41 . . 0.29 0.24 . . 80 22 

MMMM 0 0 0 0 0 + + + 1.21 1.30 1.25 0.97 0 0 0 0 
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Figure A1.3: Estimating party-level effects on government outcomes at the party level. 

 

Figure A1.4: Estimating government-level effects on governments at the party level. 

 

Figure A1.5: Estimating country-level effects on governments at the party level. 
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Results: Interdependencies in the aggregation process 

I present the consequences of ignoring interdependencies in the aggregation process graphically as they are 

rather nonlinear. Figures A1.6 – A1.8 show the bias of the structural regression coefficient estimates β̂ and 

associated uncertainty estimates sd̂(θ) caused by the effect of weight variables 𝜌 in the aggregation process. 

The considered weight predictors are (i) parties’ seat share relative to the other coalition partners (party 

level), (ii) governments’ ideological heterogeneity (government level), and (iii) prime ministerial powers 

(country level).  

Linear outcome. Figure A1.6 shows that weight predictors at the party level barely affect regression 

coefficients at the party level. Instead, they cause a positive bias in the regression coefficients at the 

government and country level when the effect of the weight regressor is positive. Figure A1.7 indicates that 

weight predictors at the government level affect regression coefficients at all three levels. If the effect of 

the weight regressor is negative, party-level coefficients are overestimated, and government- and country-

level coefficients are underestimated. If the effect is positive, party-level coefficients are underestimated, 

and government- and country-level coefficients are overestimated. Figure A1.8 shows that weight 

predictors at the country level also affect regression coefficients at all three levels in similar ways.  

The impact on the standard error estimates is very similar across conditions: they are overestimated 

regardless of the effect direction of the weight predictors. 

Figure A1.9 shows the impact on percent true positive (power). In the linear case, power is only affected 

when the effect of weight predictors is negative.  

Survival outcome. The effect of weight predictors is different for survival outcomes. Figures A1.6 – 

A1.8 display a consistent pattern – weight predictors at all three levels cause a negative bias in the regression 

coefficients and a positive bias in the standard errors at all three levels. This combination, of course, has a 

detrimental impact on power as Figure A1.9 shows. In particular weight predictors at the party and 

government level drastically reduce the power to detect effects at the government and country level.  
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Figure A1.6: Interdependencies arising at the party level. 

 

Figure A1.7: Interdependencies arising at the government level. 

 

Figure A1.8: Interdependencies arising at the country level.
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Figure A1.9: Consequences for the power to detect effects (linear outcome) 

 

Figure A1.10: Consequences for the power to detect effects (survival outcome) 

 

Interacting party-level variables with the variables causing the interdependencies  

One might think that including interactions between structural and weight variables would ameliorate the 

bias of the SLM. This is, unfortunately, not the case. First, a SLM including interactions between weight 

and structural variables and a MMMM modeling the weight function are not the same model. The SLM 

models the effect of weight variables on the outcome and the MMMM models the weight variables on the 

weights, which are scaled differently than the outcome. Second, the results of such an interaction model in 

Figure A1.11 show that the structural regression coefficients are actually more heavily biased than without 

specifying those interactions. The specified interaction model on centered data: survreg(Surv(sim.st, sim.e) 

~ 1 + fdep + majority + investiture + fdep*pseatrel + fdep*hetero + fdep*pmpower),…). 

Figure A1.11: Interaction model 
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APPENDIX A4: EMPIRICAL APPLICATION 

To illustrate the advantages of modeling the crisscrossing relationship between parties and government, I 

apply the MMMM to study the effect of parties’ financial dependency on their members on the survival of 

coalition governments. Here, I provide more details on theoretical considerations, data, measurement, and 

model estimation. 

Theory 

The effect of parties’ financial dependency on their rank and file 

There is a latent power distribution within each party apart from the conspicuous set of rules. In fact, 

the latent power distribution is often considered more informative than the ‘official story’ captured by the 

party statutes. Parties need financial capital and labor inputs to be financed, to campaign, to develop and 

implement party policies, and to get information about the electorate. The less financial capital parties 

receive from sources other than their members, the more they depend on them. Most members cannot be 

rewarded with office spoils but are reimbursed with promises about future public policy. Consequently, the 

more party leaders depend on their rank-and-file, the more they are constrained in departing from their 

parties’ policy position. This policy inflexibility thwarts reaching and maintaining inter-party agreement 

(Müller and Strøm 1999; Strøm 1990). 

Interdependencies in the aggregation process 

The distinct features of each coalition party add complexity to coalition governance. Yet, whether 

parties’ financial dependency and other party features will influence government survival likely depends 

on coalitions’ structural situation. Specifically, I argue, the relationship of coalition parties to each other 

will determine the influence of party features because intra- and inter-party politics condition each other. In 

the following, two aspects of coalitions’ interdependence structure are considered, their ideological 

relationship, and power distribution. As I show in section 3.3 of the paper, these hypotheses suggest a 

nonlinear aggregation of party effects. 

First, the effect of each party on government survival should depend on its clout within coalition. 

Gamson (1961) famously argued that party impact is proportional to legislative seat share. However, as any 

party, regardless of seat share, may pull out of the coalition, it is unclear whether this idea holds in the 

context of government survival.  

Second, the impact of de/stabilizing party features should be amplified when the potential for inter-

party disagreement is high, which is the case when ideologically heterogenous parties work together. Thus, 

I hypothesize that party effects increase with the ideological heterogeneity of coalition governments. 

There is no empirical record on the weight of parties in their effect on government survival because the 

aggregation of party effects has not been explicitly modeled yet. Available evidence on the impact of parties’ 
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relative seat share is in line with Gamson’s law (Bäck, Debus, and Dumont 2011). However, as those studies 

treat government policy as an independently realized outcome of each party in government, they likely 

suffer from disaggregation bias (causing excessive Type-I error). A breadth of work shows that larger and 

ideologically heterogenous coalitions exhibit higher termination hazards (Warwick 1994). These studies, 

however, do not disentangle whether the increased termination hazard is a direct effect of coalition size and 

ideological heterogeneity or an indirect effect because party effects in larger-sized and ideologically 

heterogeneous coalitions are amplified.  

Data 

Offering the most comprehensive information on coalition governments in Western democracies since 

WWII, I use the Woldendorp, Keman and Budge dataset (2000) (WKB) to source start and end date of each 

government, reason for termination, government parties, and their distribution of seats in parliament. The 

recent update (Seki and Williams 2014) covers 1,342 governments in 48 countries between 1944 and 2014. 

I use two datasets to source party features. First, the political position of government parties on a right-

left scale is taken from the Comparative Manifestos Project (Volkens et al. 2016). Second, Round 1a of the 

Political Party Database (Scarrow, Poguntke, and Webb 2017) (PPDP) is used to measure parties’ financial 

dependency on their members. Released in 2017, the dataset provides the most detailed information on 

political party organization available. It is coded by country experts – for the most part directly from party 

statutes – and describes the extra-parliamentary organization of 122 parties from 20 countries in 2011. 

Parties’ financial dependency is therefore assumed to be time constant. A desideratum for future research is 

to relax this assumption as more time points become available or party features of past governments are 

coded. Although the PPDB is the most comprehensive effort to collect comparative information on intra-

party features, it covers only 122 parties, which is why I make use of imputation by chained equations with 

predictive mean matching. This approach is preferable over listwise deletion, which induces strong bias in 

the presence of nonrandom missingness and small groups (Newman and Sin 2009). To assess the robustness 

of the approach, I also employed a multivariate normal imputation model and tried multiple combinations 

of variables in the imputation models. The sensitivity checks confirm that the obtained results are robust to 

a wide array of specifications and are available on request.  

Excluding parties from countries not part of the PPDB, 199 single-party governments, and 21 caretaker 

governments, I end up with a sample of 401 governments from 18 countries23, and a total of 194 parties. 

Table A2.2 presents the univariate descriptives of the final sample.   

 
23 The countries are Australia, Austria, Belgium, Czech Republic, Denmark, France, Germany, Hungary, Ireland, 

Israel, Italy, Netherlands, Norway, Poland, Portugal, Spain, Sweden, United Kingdom. 



 

 

148 

 

Table A2.2: Univariate statistics of the employed variables. 

Level Variable Final sample 

  Mean (SD) Min / Max 

Party 

 

N=194 

Parties’ financial dependency  

(in percent) 
15.923 (14.104) 0.018 / 75 

Parties’ share of seats relative to the 

other coalition partners 
-0.053 (0.331) -0.727 / 0.849 

Parties’ position on right-left scale 2.250 (22.023) -44.500 / 68.966 

Government 

 

N=401 

Premature termination 0.462 (0.499) 0 / 1 

Government duration (in days) 579 (460) 8 / 1840 

Ideological heterogeneity 0.768 (0.416) 0 / 4.444 

Majority 0.786 (0.410) 0 / 1 

Minimal winningness 0.313 (0.464) 0 / 1 

Coalition size 3.820 (1.674) 2 / 9 

Country 
Investiture vote 0.556 (0.511) 0 / 1 

Prime ministerial powers 4.056 (1.955) 1 / 7 

Statistics are calculated on the final sample after imputation. Variables are unstandardized. 

Measurement 

Government duration. While in WKB, government duration is measured as the time between investiture 

of a government and investiture of the succeeding government, the duration measure of the European 

Representative Democracy dataset (Andersson, Bergman, and Ersson 2014) excludes the government 

formation period. Therefore, I use their duration measure where available. I also exclude crisis/caretaking 

periods and country differences in term length will be absorbed by country fixed effects.  

Government termination. WKB records seven reasons for termination: (1) elections, (2) voluntary 

resignation of the prime minister, (3) resignation of the prime minister due to health reasons, (4) dissension 

within government, (5) lack of parliamentary support, (6) intervention by the head of state, and (7) 

broadening of the coalition. Focusing on termination decisions to escape political deadlock, I coded reason 

2, 4, 5, and 6 as conflictual termination and censored all other reasons. I conducted multiple robustness 

checks for this decision, which are available on request. Lupia and Strøm (1995) differentiate government 

terminations with respect to the employed constitutional mechanism. This approach is not ideal for the 

purposes of this paper as the categorization (nonelectoral replacements/early elections) crosses the 

underlying motivations (gridlock/opportunism). Whether coalitional gridlock leads to nonelectoral 

replacements or early election depends on the availability of outside offers. Focusing on government 

durability, it is therefore more expedient to differentiate terminations with respect to their underlying 

motivations. Finally, I adopt the approach of King et al. (1990) to censor all governments that reach the 

year preceding regular elections to remove terminations due to strategic election timing. 
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Parties’ financial dependency. The latent dependency of party leaders on their rank-and-file is measured 

by the share of financial contributions from party members in the total funding of parties, which the PPDB 

obtained from parties’ financial reports. 

Ideological heterogeneity. Following Warwick (1994), I compute the standard deviation of coalition 

parties’ right-left score to measure governments’ ideological heterogeneity. Benoit and Laver (2007) point 

to the incomparability of the left-right score across countries and time, which is why I divide the coalitions’ 

standard deviation by the left-right standard deviation of all parties in the parliament that year. Our measure 

of ideological heterogeneity is therefore relative to the ideological distribution at time and place. 

Relative seat share. I define the relative seat share of party 𝑗 in government 𝑖 as 𝑆𝑖𝑗 =

(
𝑠𝑒𝑎𝑡𝑠𝑖𝑗

∑ 𝑠𝑒𝑎𝑡𝑠𝑖𝑗𝑗
−

1

𝑁𝑖
) (

𝑁𝑖

𝑁𝑖−1
). When parties’ seat shares are equally distributed within the coalition, 𝑆 = 0. By 

contrast, when one party holds all seats (which is never the case), 𝑆 = 1 for the party holding all seats and 

𝑆 = −1 for all parties holding no seats. Further explanations for this coding approach are presented in 

Appendix A4.  

Control variables. The following variables are considered: Whether the government holds a majority 

in parliament, the number of government parties, whether an investiture vote was required, and country 

dummies. 

Model estimation 

The model is fitted in JAGS (Plummer 2015; v.4.3) from within R using the rmm package provided 

with this paper. The approach is employed because popular software packages such as SPSS, Stata, and R 

are not yet able to estimate continuous-time multiple membership multilevel survival models within 

endogenized weights. Parameters to be estimated are the vectors of regression coefficients β
G, βP, βC, ρP, ρG, 

the variance of the random terms σ
uP
2 ,σ

uC
2 , and the shape parameter of the Weibull distribution p. The 

identification of the variance of party random effects rests on parties having been in different coalitions 

over time, which is the case. I specified 5 chains, a chain-length of 100,000 with a burn-in of 10,000, and 

weakly informative priors because I ran in convergence issues with too uninformative priors. The priors are 

normal distributions for regression coefficients β~N(0,000.1) and ρ~N(0,0.1), scaled half-t distributions 

for the standard deviation of random effects (Gelman 2006) σU~Half-T(S = 25, df = 1), and an 

exponential distribution for the shape parameter: p~ exp( 0.01).  

Implementing the weight constraint in JAGS  

JAGS does not easily accommodate constraints. The weight function below is equivalent to equation 

(6) in section 3.3 and programmable in JAGS:  
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Table A2.4: Implementing the weight constraint in JAGS 

Equation (6) in section 3.3  Equivalent function that is estimable in JAGS 

𝒘𝒊𝒋 =
𝟏

𝒏𝒊
𝒆𝒙𝒑(−{𝒛𝒊𝒋

′ 𝝆})
  

s.t. ∑ ∑ 𝒘𝒊𝒋𝒋𝒊 = 𝑵 

𝑤𝑖𝑗 =
1

𝑛𝑖
𝑒𝑥𝑝(−{𝒛𝒊𝒋

′ 𝝆})
∙

𝑁

∑ ∑ 𝑤𝑖𝑗𝑗𝑖
 

 

A comment on the use of multilevel modeling 

The prevalent method in the government survival literature is the Cox proportional hazard model, a 

continuous-time survival model, which accounts for the perfectly hierarchical nesting of governments in 

countries with the use of heteroscedasticity-consistent standard errors (Lin and Wei 1989) or with the use 

of shared frailty modeling (Hougaard 2000). Robust standard errors correct for the misspecification of the 

error-covariance structure so that the estimates are unbiased even though the nesting structure is ignored. 

Such linearization methods, however, impose a population-averaged rather than subject-specific 

interpretation of regression coefficients (Neuhaus, Kalbfleisch, and Hauck 1991). Moreover, while robust 

standard errors to account for multiple membership structures have been proposed for linear regression (see 

Aronow, Samii, and Assenova 2015), they do not yet exist for survival models. Shared frailty modeling, 

which is the approach I take, explicitly models multilevel structure using random terms. 

While micro-macro applications are quite rare in the multilevel literature, as this application shows, it 

is possible to identify the individual contributions to group outcomes within the multilevel framework 

(Goldstein 2011a, 255-65; Snijders 2016). There are alternatives, such as a latent variable approach by 

Croon and van Veldhoven 2007 and a network autocorrelation approach by Leenders 2002. The advantage 

of using multilevel modeling is that the framework is well-developed.  

MCMC diagnostics 

The carried-out MCMC convergence and autocorrelation diagnostics are acceptable and indicate the 

convergence of all models:  

The maximum Gelman & Rubin convergence statistics across all model parameters and chains is less 

than 1.01, which suggests adequate convergence. The absolute value of the related Geweke z-score is 

smaller than 2 across all model parameters, which suggests that the mean of the first part and the last part 

of the chains are the same. The p-values of the Heidelberger and Welch diagnostic are all larger than 0.05 

so that the null hypothesis that the Markov Chain is in the stationary distribution cannot be rejected. Finally, 

the autocorrelation plots across all model parameters and chains likewise do not indicate significant 

autocorrelation.  

The Monet plots below show the posterior distributions and trace plot of the most important parameters. 

The solid line indicates zero and the dashed line shows the arithmetic mean over all 5 chains.  
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Monetplots 
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APPENDIX A5: EXTENSIONS 

Endogenizing the aggregation process makes it possible to test theoretical expectations on aggregation 

processes, such as the aggregation of player strategies in game-theoretic models (Lupia and Strøm 1995; 

Tsebelis 2002) and spatial theory (Laver and Shepsle 1996), or indices that aggregate party features to a 

higher level, such as power indices (Banzhaf 1964). Theoretical expectations on such processes can be 

tested with the MMMM by translating them into weight functions. The proposed approach also makes it 

possible to convert other theoretical ideas on the role of parties in coalition governments into testable 

models. Here I advance three ideas. 

Party random effects as a random walk 

We may also assume that the effects of unobserved variables change across a party’s government 

participations by including a random walk centered at the party’s random effect of its previous government 

participation: . The indexing function G(i,j) returns government 𝑖∗ that party j 

participated before participating in i. 

A social network perspective on government survival 

We might theorize that the features of party dyads affect government survival. It has been argued, for 

instance, that the history of cooperation among the government parties is related to government survival as 

increasing amount of mutual trust, information about each other, and some form of asset specificity reduce 

bargaining complexity (Saalfeld, 2008: 358-9). Such arguments introduce a social capital perspective, 

which has not yet been explored empirically in depth. This perspective would recognize yet another level 

at which dependencies possibly arise – the nesting of party dyads in governments and, conversely, the 

nesting of governments in party dyads. The nesting, again, is a multiple membership structure. Explicitly 

modeling the effects of party dyad features, such as years of previous cooperation, would then allow to 

examine whether social capital in the form of the history of cooperation has a uniform effect on government 

survival or whether it decays over time. A suitable model would look like this:  

𝜆𝑖 = 𝜆0 𝑒𝑥𝑝

(

 
 
…+∑𝑤𝑖(𝑗,𝑙)𝑑𝑖(𝑗,𝑙)

𝑖,𝑗
𝑗≠𝑙 )

 
 

 

with 𝑑𝑖(𝑗,𝑙) = 𝒙𝒊(𝒋,𝒍)
𝐷′ 𝜷𝐷 + 𝑢𝑖(𝑗,𝑙)

𝐷   and  𝑤𝑖(𝑗,𝑙) = 𝛿
𝑇𝑖(𝑗,𝑙)
𝐷

 

where 𝑖 = 1,… , 𝐼 indexes governments, 𝑗 = 1,… , 𝐽 indexes party 1, and 𝑙 = 1,… , 𝐿 indexes party 2. The 

hazard rate of termination of government 𝑖 at time point 𝑡 now also includes the aggregated impact of 

observed (𝑥𝑖(𝑗𝑙)
𝐷 ) and unobserved (𝑢𝑖(𝑗𝑙)

𝐷 ) dyad-level features. A government with, say, four parties exhibits 
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(
4
2
) = 6 dyads and its cooperative past would consequently be the weighted sum over the years of 

cooperation of these 6 dyads up until taking office together in government 𝑖 at time point 𝑡. The weight is 

modeled in terms of a power law decay function, where 𝑇𝑖(𝑗,𝑙)
𝐷  equals the time the cooperation dates back. 

Preliminary analyses (available on request) show a significant effect and an estimated discount parameter 

𝛿 of 0.9, indicating a moderate decay of social capital over time. Tranmer and colleagues (2014) show in 

more detail how the MMML model can be used to incorporate network effects into our analyses.  

The impact of opposition parties on government survival 

So far, the focus has been on the parties in government although we might be interested in a total party 

effect, which would also include opposition parties. The influence of opposition parties can likewise be 

statistically represented in a multilevel framework. The total party effect can be split up into cross-

classification of government and opposition party effects resulting in a bivariate random effect distribution 

(Goldstein 2011, 243–54). This approach can shed light on the nonelectoral replacement termination hazard.  

I expect it to be primarily structured by the existence of opportunities with opposition parties. Previous 

studies regress this type of termination hazard mainly on government properties although opposition 

attributes probably offer more explanatory power in this regard. A suitable MMML model looks like this: 

𝜆𝑖 = 𝜆0 𝑒𝑥𝑝(…+ ∑ 𝑤𝑖𝑗
𝐺𝑝𝑗

𝐺

𝑗∈𝑃(𝑖)

+ ∑ 𝑤𝑖𝑗
𝑂𝑝𝑗

𝑂

𝑗∉𝑃(𝑖)

) 

with 𝑤𝑖𝑗
𝐺 = 𝑤𝑖𝑗

𝐺∗ and 𝑤𝑖𝑗
𝑂 = 𝑤𝑖𝑗

𝑂∗ 

The effect of opposition parties 𝑝𝑗
𝑂 may only consist of a random effect as current coalition government 

datasets do not offer much information on parties who are not or never were in government. The weights 

𝑤𝑖𝑗
𝐺 , 𝑤𝑖𝑗

𝑂 may or may not be endogenized.  
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SUPPLEMENTARY MATERIAL CHAPTER 3 

A DATA 

Appendix A summarizes the operationalization of the employed variables (A1), describes the amount of 

missing values and the imputation procedure (A2), reports descriptive statistics for both samples (A3), and 

discusses the use of survey weights (A4).  

 

A1 Operationalization of all employed variables 

Table A1. Operationalization of all employed variables 

Variable Groups 

Socioeconomic 

status (SES) 

Add Health’s pre-constructed SES score is on a z-scale and based on a principal 

component analysis using as input parental education, parental occupation, parental 

income, and whether the student receives free lunches. I differentiate students globally 

(across schools) into low-, medium-, high-SES at the tercile cutoff points. This 

operationalization is discussed in Appendix B1. 

Parental 

education 

I categorize parental education up to high school as low, some college as medium, and 

at least a 4-year college degree as high. 

Parental 

occupation 

Based on the Goldthorpe class typology (Goldthorpe, Llewellyn, and Payne 1980), I 

categorize parental occupation into low (e.g., unemployed or unskilled), medium (e.g., 

skilled manual and supervisory), and high (e.g., managers, professionals). 

Parental 

income 

I categorize total household income in 1994 dollars into low, medium, high at the 

tercile cutoff points. 

Race Add health’s pre-constructed variable categorizes students into White, Black, Native 

American, Asian, and Hispanic.  

Gender Add Health’s pre-constructed variable categorizes students as girls and boys.  

Language 

spoken at home 

Add Health categorizes language spoken at home into English, Spanish, or another 

language. This categorization is coarse and will, therefore, label some friendship ties 

as same-language while they are in fact cross-language. As a consequence, this 

differentiation will overestimate the amount of language-based segregation. 

GPA GPA is averaged across English, Math, Social Science, and Science. To differentiate 

between same- and cross-GPA friendship, I categorize GPA into low, medium, high at 

the tercile cutoff points. For the most part, grades are reported by students themselves. 

For 11% of students, I could take this information directly from their transcripts. 

Residential 

proximity 

Add Health includes students’ residential locations and neighborhoods, which are 

placed on an artificial map with the school as a reference point for privacy protection. 

I calculate the log-Euclidean distance between students. 

Overlap in 

extracurricular 

activities 

 

Students indicated their participation in a list of 20 possible school clubs (e.g.,  high 

school band) and 11 sports teams (e.g., basketball). I measure the degree of overlap of 

pairs of students as the number of extracurricular activities in which they participate 

together. 

Course overlap 

 

AHAA measures course overlap of pairs of students as the number of courses taken 

together, weighted by course size and contact time. This score operationalizes the 

degree to which students share a social and academic space in school by virtue of their 

course taking patterns (Barber and Wasson 2014; Frank et al. 2008). 
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A2 Missing values and imputation 

Exponential random graph modeling requires that the features of all nodes are observed. As listwise 

deletion would remove any nodes with incomplete information from the network, I employ multiple 

imputation using predictive mean matching to eliminate missing values in the final sample. This is an 

important step because removed students could systematically differ from other students in the network and 

because removing students from the network would distort the analyzed network structure. That is, the 

frequency of dyads, triads, and other higher-order network structures would be altered if students were 

removed from the networks. Distorted network structures would be particularly problematic for the 

purposes of this paper in which relational mechanisms are examined. 

Fortunately, the response rate of the inschool survey in which students identified their friends is high 

(80 percent on average in the considered schools) and item nonresponse with regard to most considered 

features is low (see Table A2). The exception is students’ course overlap for which about 40 percent of all 

student pairs lack data. The reason is that the AHAA expansion was carried out during wave III and 

transcripts (of the wave I school year) are thus only available for the subset of students that also participated 

in wave III. The data are therefore not missing completely at random but at random conditional on the usual 

suspects of panel attrition (e.g., race, SES background, school type, and region).24  

In this context, multiple imputation has shown to be effective at reducing bias and increasing power 

and may (currently) be the most reliable approach to handle missing data in network analyses (Krause et 

al. 2020; Smith, Morgan, and Moody 2022). I draw on the multiple imputation by chained equations as 

implemented in the R package ‘mice’ (van Buuren and Groothuis-Oudshoorn 2011). I use predictive mean 

matching because it tends to outperform other methods and can accommodate both categorical (e.g., race) 

and continuous (e.g., SES score) variables. I create M=10 imputations and estimate separate ERGMs on 

each imputation sample. I then generate 1,000,000 synthetic networks from the fitted models (100,000 

networks per model). Table A2 details the amount of observed and missing values. Note that the proportion 

of missing data provides limited information about bias reduction and efficiency gains that can be made 

from multiple imputation (Madley-Dowd et al. 2019). Crucial instead is how informative auxiliary variables 

are of the patterns of missingness in the data. In the following, I discuss the specification of the imputation 

model in detail. Both sample I and II contain missing data but I focus on sample II in the following 

discussion because the variables used in sample I contain few missing values.    

 
24 Since Add Health oversampled minorities in the inschool but not in the inhome survey and because minorities 

are more likely to drop out from panel studies, students for which residential locations and course selections are 

unobserved are more likely nonwhite and from lower SES background. Accordingly, missingness in the final sample 

is not completely at random and studies employing these data using listwise deletion (e.g., Frank et al. 2008; Mouw 

and Entwisle 2006) examined networks that, to some degree, lacked majority students’ minority friends. 
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Imputation model for nodal features 

I use the total sample (N=91,018) to predict missingness in the final sample (N=5,942) to maximize the 

information in the imputation model. The imputation model for nodal features includes the following 

variables: students’ age, grade, gender, race, SES, GPA, personality (big five), well-being in school 

(averaged across 10 items), extracurricular activities, household size, language spoken at home, indicator 

whether mother is working, rating how much mother cares about them, neighborhood and school mean and 

variance in SES, and rating how safe they feel in their neighborhood. The auxiliary variables are highly 

predictive of key variables of interest (e.g., 𝑅2 = 0.71 when regressing SES on all auxiliary variables). 

Trace plots suggest that the estimation algorithm has converged.   

 

Imputation model for edge features 

I use the total sample (N=42,574,827) to predict missingness in the final sample (N=3,133,824) to 

maximize the information in the imputation model. The samples are based on all possible combinations of 

pairs of students who attend the same school, which results in N(N-1)/2 cases per school as the unit of 

analysis is the undirected dyad. The imputation model for edge features includes the following variables: 

school area (rural, suburban or urban), school size, students’ absolute difference in age, grade, GPA, SES, 

well-being in school, household size, neighborhood safety, whether students are of the same gender, race, 

and speak the same language at home, as well as their course overlap, overlap in extracurricular activities, 

and neighborhood proximity. For all quantitative variables, I also include their quadratic effect and an 

interaction with the lower value in the dyad. The auxiliary variables are highly predictive of key variables 

of interest and trace plots suggest that the estimation algorithm has converged. 

Table A2. Number of observed and missing data. 

Variable N observed N missing/imputed % missing 

Socioeconomic status  19,324 1,953 9.2 

Parental education 66,651 561 0.8 

Parental occupation 60,164 833 1.4 

Parental income 15,351 3,040 16.5 

Race 88,143 88 0.1 

Subracial categories 82,211 1,213 1.5 

Gender 89,812 0 0 

Language spoken at home 20,737 1,634 7.3 

GPA 76,920 1,083 1.4 

Big 5 15,675 2,588 14.2 

Extracurricular activities  85,627 1,071 1.2 

Distance between 

residential locations 

3,271,341 602,942 15.6 

Overlap extracurricular 

activities  

42,574,827 0 0 

Overlap course selections 1,730,490 1,078,752 38.4 

  



 

 

161 

 

A3 Descriptive statistics 

Table A3 provides descriptive statistics of sample I (core sample, weighted statistics) and Table A4 

provides descriptive statistics of sample II (saturated sample, unweighted statistics). A comparison shows 

that there are few differences in the demographic makeup of the two samples.  

Table A3. Descriptive statistics sample I (Add Health core sample, weighted statis).  

Variable M SD Min, Max N 

SES score -0.03 1.2 -5.59; 3.51 83,444 

Parental education 

Low: 0.411 

Med: 0.322 

High: 0.267 

  83,444 

Parental 

occupation 

Low: 0.336 

Med: 0.193 

High: 0.471 

  83,444 

Parental income 

(in 1994 dollars) 
44,535 43,014 0; 999,000 83,444 

Age 14.7 1.71 10; 19 83,444 

Race 

White: 0.703 

Black: 0.160 

Native: 0.011 

Asian: 0.040 

Hispanic: 0.086 

  83,444 

Gender 
Boys: 0.498 

Girls: 0.502 
  83,444 

Language spoken 

at home 

English: 0.923 

Spanish: 0.054 

Other: 0.023 

  83,444 

GPA 2.79 0.833 0; 4 83,444 

Outdegree 2.74 2.57 0; 10 83,444 

Indegree 2.68 2.84 0; 27 83,444 
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Table A4. Descriptive statistics for sample 2 (Add Health schools 2, 3, 6, 7, 8, 12, 28, 58, 77, 81, 88, 90, 

106, 126, 194, 369).  

Variable M SD Min, Max N 

SES score 0.05 1.15 -4.33; 3.51 5,942 

Parental education 

Low: 0.404 

Med: 0.306 

High: 0.290 

  5,942 

Parental occupation 

Low: 0.360 

Med: 0.207 

High: 0.433 

  5,942 

Parental income 

(in 1994 dollars) 
47,199 57,115 0; 999,000 5,942 

Age 15.1 1.52 10; 19 5,942 

Race 

White: 0.727 

Black: 0.150 

Native: 0.011 

Asian: 0.030 

Hispanic: 0.082 

  5,942 

Gender 
Boys: 0.501 

Girls: 0.499 
  5,942 

Language spoken at 

home 

English: 0.952 

Spanish: 0.035 

Other: 0.013 

  5,942 

GPA 2.75 0.83 0; 4 5,942 

Outdegree 3.00 2.53 0; 10 5,942 

Indegree 3.10 2.90 0; 21 5,942 

Overlap: Courses 

(# of courses, centered 

and weighted by course 

size and contact time) 

0.081 0.310 -0.10; 4.57 3,133,824 

Overlap: 

Extracurriculars 

(# of extracurricular 

activities, centered) 

0.076 0.340 -0.10; 3.37 3,133,824 

Overlap: Neighborhoods 

(log-Euclidean distance 

in meters, centered) 

0.172 1.18 -8.14; 3.92 3,133,824 
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A4 Survey weights for dyadic data 

Our knowledge about segregation patterns in friendship networks is based, on the one hand, on samples 

that are confined single locations or regions (e.g., Wimmer and Lewis 2009; McMillan 2022) and, on the 

other hand, on samples that are nationally representative (e.g., Add Health, CILS4EU). To generalize results 

to the national population, however, the latter data require design weights because the sample is stratified 

and select groups are oversampled. Using race as an example, Table 2 shows that the racial distribution in 

Add Health deviates substantially from the proportions reported in NCES (1998a, 1998b) without using 

survey weights. When using survey weights, in contrast, the racial distribution is approximated much better. 

Table A5: The racial distribution in Add Health with and without survey weights. 

 
NCES 1995 estimate25 Unweighted sample 

(sample 1) 

Weighted sample 

(sample 1) 

White 67.2 56.9 70.3 

Black 16.0 17.0 16.0 

Native American 1.0 3.5 1.1 

Asian 3.8 5.9 4.0 

Hispanic 12.0 16.7 8.6 

 

Most network studies do not make use of survey weights, mainly because popular network formation 

models (e.g., ERGM) have not been extended to accommodate survey weights. As the analyses in this paper 

are simulation-based, I can weigh each dyad by its inclusion probability in the sample. Regardless of 

whether or why a dyad exists, it’s inclusion probability in the sample is the product of the inclusion 

probability of the involved students (Chantala 2001). Accordingly, the weight of a dyad equals 𝑤dyad =

𝑤ego ∙ 𝑤alter when total sample weights are used and 𝑤dyad =
𝑤ego∙𝑤alter

𝑤school
 when poststratification weights are 

employed. I validated this weighting approach with a small simulation study (available upon request) in 

which I sample units unequally from a population and create networks among the sampled units. Weighing 

dyads by the product of the unit weights yields the same proportions as when calculated from the population 

networks.  

For all analyses involving sample 1, I make use of the grand sample weight in Add Health (GSWGT1), 

which corrects both for selection and nonresponse bias. This weight is available for Add Health’s core 

sample and based on student and school attributes (race, SES background, school type, and region). Since 

not all students in the friendship network are part of the core sample, I predict their grand sample weight 

based on the same school and student attributes and then rescale the weights such that the distribution of 

weights in the full sample (sample 1) matches the distribution of weights in the core sample. Table A6 

 
25 Private elementary and secondary school enrollment by race in 1995: White: 77.9, Black: 9.2, Native: 0.4, 

Asian: 4.6, Hispanic: 8.0. Public elementary and secondary school enrollment by race in 1995: White: 64.8, Black: 

16.8, Native: 1.1, Asian: 3.7, Hispanic: 13.5. Total private-school enrollment: 5,032,200. Total public-school 

enrollment: 44,840,000. 
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shows that this procedure works quite well. The proportion of each dyad type in the socioeconomic mixing 

matrix is close to its mathematical expectation (11.1%) when weighing dyads by the product of students’ 

weights in the completely random network. Without weighing dyads, in contrast, the proportions deviate 

from the mathematical expectation because medium-SES students are somewhat overrepresented in the 

sample. 

Table A6: Proportion of each dyad type in the socioeconomic mixing matrix with and without weighing 

dyads in the completely random network. 

Tie 

combination 
low→ 

low 

low→ 

med  

low→ 

high  

med→ 

low 

med→ 

med  

med→ 

high  

high→ 

low  

high→ 

med 

high→ 

high  

unweighted 6.9 11.1 8.2 11.1 18 13.3 8.2 13.3 9.8 

weighted 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 

 

I cannot use survey weights for any of the analyses involving sample 2 since the saturated sample is a 

nonrandom subset of Add Health’s core sample. Effect estimates are therefore not population-averaged 

associations but average associations in the sample. However, comparisons show that students in both 

samples exhibit similar sociodemographic profiles and their friendship networks are similarly segregated 

along sociodemographic lines (see Appendix A3).  

B DESCRIPTION OF SOCIOECONOMIC SEGREGATION  

IN HIGH SCHOOL FRIENDSHIP NETWORKS 

Appendix B examines the robustness of the descriptive results. The section analyzes in particular the 

robustness of the results with respect to different operationalizations of SES background and definitions of 

friendship. 

Figure B1 depicts the density of Add Health’s pre-constructed SES score. Figures B2 to B5 replicate 

Figure 2 with the following cutoff points: 50/50, 33/66, 25/75, and 25/50/75 percentiles. The figures 

demonstrate that the key pattern – the unilateral exclusion of students at the bottom and closure among 

students in the upper part of the SES distribution – is evident regardless of the exact cutoff points.  

Figure B6 shows that the segregation pattern is also similar when only reciprocated friendship ties are 

analyzed with some nuances: segregation is greater for low→low than for high→high ties. This is because 

low-SES students are excluded both by medium- and high-SES students and thus reciprocated ties are likely 

only among themselves. In contrast, for high-SES students, reciprocated ties are likely not only amongst 

themselves but anyone else they nominate. Therefore, the reason why segregation is greater for low→low 

than for high→high ties is that reciprocated ties do not differentiate exclusion and closure.  

Finally, Figure B7 shows that this key pattern is more difficult to appreciate when the continuous SES 

score is used to examine socioeconomic segregation as linear distance between friends’ socioeconomic 

background. The red line in the figure depicts the observed linear distances. The black line depicts the linear 
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distances expected if students selected friends at random. Comparing them shows that small distances 

between friends’ SES background are more frequent than expected and large distances are less frequent 

than expected. However, the linear analysis underestimates the true segregation. The reason is that the linear 

distance measure combines low↔med and med↔high ties and ties with the same distance but different 

directions (e.g., low→high and high→low ties) even though their tie probabilities differ systematically. 

Therefore, the operationalization of socioeconomic segregation in prior studies masks the unilateral and 

nonlinear segregation pattern to some extent. 

 

Figure B1: Density of Add Health’s SES score. 

 

 

 

Figure B2: Socioeconomic segregation by tie combination with 50th percentile as cutoff point. 
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Figure B3: Socioeconomic segregation by tie combination with 33rd and 66th percentiles as cutoff points. 

 

 

 

 

Figure B4: Socioeconomic segregation by tie combination with 25th and 75th percentiles as cutoff points. 
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Figure B5: Socioeconomic segregation by tie combination  

with 25th, 50th, and 75th percentiles as cutoff points. 

 
 

 

 

 

Figure B6: Socioeconomic segregation in friendship networks of reciprocated ties by tie combination 

with 33rd and 66th percentiles as cutoff points. 
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Figure B7: Socioeconomic segregation as linear distance between friends’ SES background as a 

continuous SES score. The red line depicts the observed linear distances. The black line depicts the linear 

distances expected if students selected friends at random. 
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C ANALYSIS OF DETERMINANTS OF SOCIOECONOMIC SEGREGATION 

Appendix C provides details for the analysis of determinants of socioeconomic segregation. Section 1 offers a comprehensive review of prior studies. Section 2 

presents measures of correlation between SES and third variables to better understand their impact on socioeconomic segregation. Sections 3-6 offer more details on 

the ERGM results (specification details, full results, robustness checks, and convergence and goodness-of-fit statistics). 

C1 Review of prior work  

Table C1: Review of prior work on the determinants of racial and socioeconomic segregation in high school friendship networks. 

Paper Summary Stratified settings Homophily, Popularity, Sociality Relational mechanisms Generalizability 

Current study Determinants of socioeconomic segregation 

in high school friendship networks. 

Data: Add Health (year: 1994/5) 

Type: Cross-sectional  

Unit of analysis: Directed dyad 

Nschools =  128, Nnodes =  83,000 

Method: ERGM simulations to directly  

measure the impact of tie-formation 

mechanisms on socioeconomic segregation 

Courses, 

Extracurriculars, 

Neighborhoods 

Not included: 

Parental networks, 

Primary / middle 

school networks 

Homophily: SES, GPA, race, 

gender, grade 

Popularity: SES, GPA, race 

Sociality: Students are 

constrained to have the same 

outdegree as observed. 

Reciprocity, 

Triadic closure, 

Preferential attachment, 

Homophily * reciprocity, 

Homophily * triadic closure 

Partly nationally representative 

of students in US high schools in 

1994/5  

→ Descriptive analyses are 

weighted (AH grand sample 

weight) 

→ Decomp. of determinants 

within schools is unweighted 

Moody 2001 School-level moderators of racial segregation 

Data: Add Health (year: 1994/5) 

Type: Cross-sectional  

Unit of analysis: School 

Nschools = 130  

Method: Linear regression 

Extracurriculars, 

Neighborhoods 

Not included: 

Courses 

None None Nationally representative of US 

high schools in 1994/5 (AH 

school weights). 

Joyner and Kao 

2001 

School-level moderators of racial segregation 

Data: Add Health (year: 1994/5) 

Type: Cross-sectional  

Unit of analysis: Student 

Nschools = 134,Nnodes =  78,007  

Method: Logistic regression 

None Homophily: race 

Popularity: none 

Sociality: none 

None Sample of students in US high 

schools in 1994/5 (no survey 

weights) 

Mouw & Entwisle 

2006 

Neighborhood effects on racial segregation in 

in high school. 

Data: Add Health (year: 1994/5) 

Type: Cross-sectional  

Unit of analysis: Directed dyad 

Nschools = 134,Nnodes =  14,500  

Method: Quasi ERGM 

Neighborhoods 

Not included: 

Courses, 

Extracurriculars 

Homophily: SES, race 

Not included: GPA 

Popularity: none 

Sociality: none 

 

Reciprocity, 

Triadic closure, 

Preferential attachment 

 

Partly nationally representative 

of students in US high schools in 

1994/5  

→ Decomposition of within- and 

between-school components is 

weighted based on NCES data 

→ Within-school analysis is 

unweighted 

Goodreau et al. 

2009 

Effects of relational mechanisms on racial 

segregation in high school. 

Data: Add Health (year: 1994/5) 

Type: Cross-sectional  

Unit of analysis: Undirected dyad 

Nschools = 59,Nnodes =  63,408 

Method: ERGM 

None Homophily: race, gender, grade 

Degree: same as for homophily 

 

Not included: SES, GPA 

 

 

Triadic closure 

Not included: 

Preferential attachment 

 

 

Sample of students in US high 

schools in 1994/5 (no survey 

weights) 
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Wimmer & Lewis 

2009 

Determinants of racial segregation at uni. 

Data: Facebook friendships of one cohort at 

Texas A&M  (year: 2009) 

Type: Cross-sectional  

Unit of analysis: Directed dyad 

Nnodes =  1,640 

Method: ERGM 

Same major 

Same 

neighborhood, 

residence, room 

Not included: 

Courses, 

Extracurriculars 

Homophily: SES, race and sub-

racial groups, cultural preferences 

Not included: GPA  

Popularity: none 

Sociality: race 

Not included: SES, GPA  

Reciprocity, 

Triadic closure 

Not included: 

Preferential attachment 

Facebook friendships at Texas 

A&M in 2009 (full population, 

one cohort) 

Mc Farland et al. 

2014 

Contextual moderators of segregation in HS. 

Outcomes: Race, gender, and age segregation 

Data: Add Health (year: 1994/5) 

Type: Cross-sectional and longitudinal  

Unit of analysis: Directed dyad 

Nschools = 129, Nnodes =  75,122  

Method: ERGM meta-analysis 

Extracurriculars 

Not included: 

Courses, 

Neighborhoods 

Homophily: race, SES, GPA, age, 

gender, grade 

Popularity: students are 

constrained to have a similar 

indegree as observed. 

Sociality: same as with popularity 

Reciprocity, 

Triadic closure 

Not included: 

Preferential attachment 

Sample of students in US high 

schools in 1994/5 

→ no survey weights (meta-

analysis weighs by parameter 

precision, not by population 

weight) 

  

Hofstra et al. 2017 Outcomes: Ethnic and gender segregation in 

online and offline networks of Dutch youth. 

Data: Facebook and CILS4EU (year: 2011) 

Type: Cross-sectional  

Unit of analysis: Reciprocated dyad (?) 

Nschools = 112,Nnodes =  2,549  

Method: Multilevel linear regression  

School and 

classroom 

composition (on 

segregation in 

online networks) 

Homophily: ethnicity, gender 

Not included: SES, GPA 

Popularity: none 

Sociality: none 

 

Preferential attachment  

Not included: 

Reciprocity, 

Triadic closure 

 

Sample of students in Dutch 

secondary schools in 2011 (no 

survey weights) 

Kruse 2017 Neighborhood effects on ethnic segregation 

in German secondary school classrooms. 

Nclassrooms =  144,Nnodes =  2,393 

Data: CILS4EU (year: 2011) 

Unit of analysis: Directed dyad 

Type: Cross-sectional 

Method: Linear regression 

Neighborhoods None None Sample of students in German 

secondary schools in 2011 (no 

survey weights) 

Malacarne 2017 Individual and school-level determinants of 

cross-SES and cross-race ties in high school. 

Data: Add Health (year: 1994/5) 

Type: Cross-sectional 

Unit of analysis: Directed dyad 

Nschools =  132, Nnodes =  11,033 

Method: Logistic regression 

Extracurriculars,  

Neighborhoods 

Not included: 

Courses 

Homophily: race, SES 

Not included: GPA 

Sociality: race, SES, GPA 

Popularity: none 

 

None Nationally representative of 

students in US high schools in 

1994/5 (AH grand sample 

weights) 

Kruse & Kroneberg 

2019  

Ethnic identity and ethnic segregation in 

German secondary school classrooms. 

Data: CILS4EU (year: 2011) 

Unit of analysis: Directed dyad 

Type: Cross-sectional 

Nclassrooms =  150,Nnodes = not stated 

Method: ERGM meta-analysis 

None Homophily: ethnicity, gender 

Not included: SES, GPA 

Popularity: none 

Sociality: none 

 

Reciprocity 

Triadic closure 

Not included: 

Preferential attachment 

Sample of students in German 

secondary schools in 2011 (no 

survey weights) 

An 2022 Segregation patterns in Chinese middle 

school classrooms. 

Outcomes: Gender, height, age, SES,  

personality, academic performance, smoking  

Data: ANSR (year: 2010/1) 

Unit of analysis: Directed dyad 

Same grade, 

Same classroom 

Not included: 

Courses, 

Extracurriculars, 

Neighborhoods 

Homophily: SES, GPA (rank), 

gender, age, height, smoking, 

personality (optimism) 

Popularity: same as for 

homophily 

Sociality: same as for homophily 

Reciprocity 

Triadic closure 

Preferential attachment 

Non-random sample of 6 middle 

schools in central China in 

2010/1 
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Type: Cross-sectional 

Nschools =  6,Nnodes =  4,094 

Method: ERGM meta-analysis 

 

Not included: ethnicity 

Chetty et al 2022 Determinants of socioeconomic segregation 

in online friendship networks in the US. 

Data: Facebook friendships (year: 2022) 

Unit of analysis: Directed dyad 

Type: cross-sectional 

Nnodes =  70.3m 

Method: Dyadic model 

Not studied within 

high schools 

 

Homophily: SES 

Popularity: none 

Sociality: SES 

 

Not included: race 

 

Sociality 

Not included: 

Reciprocity, 

Triadic closure, 

Preferential attachment  

Facebook friendships of US 

population aged 25-44 in 2022  

→ quasi population data 

McMillan 2022 Racial and gender homophily by friendship 

strength in middle and high schools. 

Data: PROSPER  (year: 2002/3) 

Unit of analysis: Directed dyad 

Type: Cross-sectional (networks are 

observed across multiple time points but 

analyzed cross-sectionally) 

Nschools =  51,Nnodes =  8,530 

Method: Valued ERGM meta-analysis 

None Homophily: SES, race, gender 

Popularity: same as for 

homophily 

Sociality: same as for homophily 

 

Not included: GPA 

 

 

Reciprocity, 

Triadic closure 

Not included: 

Preferential attachment 

Non-random sample of 28 

school districts in rural PA and 

IA in 2002/3 in which a RCT 

was carried out at middle and 

high schools 

 

Zhao 2022 Consolidation and ethnic segregation in 

European secondary school classrooms. 

Data: CILS4EU (year: 2011) 

Unit of analysis: Directed dyad 

Type: Cross-sectional 

Nclassrooms =  503,Nnodes =  10,904 

Method: ERGM meta-analysis 

None Homophily: SES, ethnicity 

Sociality: same as for homophily 

Popularity: same as for 

homophily 

 

Not included: GPA 

Triadic closure, 

Reciprocity, 

Tension (dgwnsp) 

Not included: 

Preferential attachment 

Sample of students in European 

secondary schools in 2011  

→ no survey weights (meta-

analysis weighs by parameter 

precision, not by population 

weight) 

 

Zhao 2023 Ethnic homophily and ethnic segregation in 

Swedish secondary school classrooms. 

Data: CILS4EU (year: 2011) 

Unit of analysis: Directed dyad 

Type: Cross-sectional 

Nclassrooms =  160, Nnodes =  3,255 

Method: ERGM meta-analysis 

None Homophily: ethnicity, gender 

Sociality: same as for homophily 

Popularity: same as for 

homophily 

 

Not included: SES, GPA 

 

Triadic closure, 

Reciprocity, 

Preferential attachment 

Sample of students in Swedish 

secondary schools in 2011  

→ no survey weights (meta-

analysis weighs by parameter 

precision, not by population 

weight) 

Hoffman & Chabot 

2023 

Determinants of socioeconomic segregation 

at a French summer camp. 

Data: Summer camp in France in 2019 

Unit of analysis: Directed dyad 

Type: longitudinal 

𝑁nodes = 60 

Method: Exp. random partition model 

Shared rooms 

Joint activities 

 

Homophily: SES, gender, age 

Popularity: same as for 

homophily 

Sociality: same as for homophily 

 

Not included: ethnicity, GPA 

Reciprocity, 

Triadic closure 

Not included: 

Preferential attachment 

Nonrandom sample of French 

teenagers aged 10-14 

Zwier & Geven 

2023 

Study socioeconomic segregation in Dutch 

primary school classrooms. 

Data: PRIMS (year: 2020) 

Unit of analysis: Directed dyad 

Type: Cross-sectional (analysis)  

Nschools =  55,Nnodes =  1,416 

Method: ERGM meta-analysis 

Parental networks 

Not included: 

Courses, 

Extracurriculars, 

Neighborhoods 

Homophily: SES, ethnicity, grade, 

gender 

Sociality: same as for homophily 

Popularity: same as for 

homophily 

 

Not included: GPA  

Reciprocity, 

Triadic closure, 

Not included: 

Preferential attachment 

Representative of Dutch primary 

school students aged 11-12  

→ no survey weights used but 

sample is self-weighting 
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Chabot 2024 Socioeconomic segregation in French middle 

schools. 

Data: 4 French middle schools (year: 2014) 

Unit of analysis: Directed dyad 

Type: Longitudinal  

Nschools =  4,Nnodes =  820 

Method: SAOM simulations  

Courses, 

Neighborhoods, 

Primary school 

network 

Not included: 

Extracurriculars 

Homophily: SES, ethnicity, GPA, 

gender 

Sociality: same as for homophily 

Popularity: same as for 

homophily 

Reciprocity, 

Triadic closure, 

Preferential attachment, 

Reciprocity*Triadic closure 

 

Nonrandom sample of students 

in four middle schools in Savoie 

and Paris 

Raabe et al 2024 Study of friendship nominations by parental 

income in Swedish secondary school 

classrooms 

Data: CILS4EU (Sweden, year: 2011) 

Unit of analysis: Directed dyad (?) 

Type: Longitudinal  

Nschools =  129,Nnodes =  4787 

Method: Multilevel SAOM simulations 

None  Homophily: SES, ethnicity, 

gender, family structure, region 

Popularity: same as for 

homophily 

Sociality: same as for homophily 

 

Not included: GPA 

 

Reciprocity (?), 

Triadic closure, 

Preferential attachment 

Sample of students in secondary 

schools Sweden in 2011 (no 

survey weights) 

 

 

The review in Table C1 is confined to observational studies of determinants of racial and socioeconomic segregation using sociometric network data. I focus on 

racial and socioeconomic segregation because their determinants overlap to a great extent. Note that many (if not most) studies never intended to disentangle the 

main drivers of segregation. I examine prior studies through this lens to assess the extent to which observational studies have disentangled the relative contributions 

of determinants. 

The review shows that much prior work omits important stratified settings (e.g., Goodreau et al. 2009; Mouw and Entwisle 2006), correlated homophilies (e.g., 

Chetty et al. 2022b; Goodreau et al. 2009), or relational mechanisms by employing dyadic network models (e.g., Chetty et al. 2022b; Malacarne 2017). Recent 

studies have made great progress towards parsing the main determinants but examine socioeconomic segregation in other countries (An 2022; Chabot 2024; Hoffman 

and Chabot 2023; Zwier and Geven 2023). Differences in degree and pattern of socioeconomic segregation across countries indicate that socioeconomic segregation 

in friendship networks is specific to its institutional and cultural context.  

Abbreviations 

− degree = sociality and popularity were not differentiated because the unit of analysis is the undirected dyad 

− preferential attachment = shorthand to refer to the “gwidegree” and “gwodegree” statistics (propensity for in-/outgoing ties to form where there are already ties) 

− Add Health = National Longitudinal Study of Adolescent Health 

− PROSPER = Promoting School-Community Partnerships to Enhance Resilience study 

− ANSR = Adolescent Smoking and Network Research study 

− CILS4EU = Children of Immigrants Longitudinal Survey in Four European Countries Study 

− PRIMS = Transition from Primary to Secondary education study 

− SAOM = Stochastic actor-oriented modeling 

− ERGM = Exponential random graph modeling 
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C2 SES disparities by third variables 

This sections provides information on SES disparities by third variables to substantiate some of the 

interpretations in the results and conclusion section.  

 

SES disparities by schools 

Students differ in SES background more within schools than between schools. To show this, I 

decompose the variance in the continuous SES score into within- and between-school components across 

the 128 schools in the core sample. The variance within schools equals VW =
∑ wσs

2
s

128
 and the variance 

between schools equals VW =
∑ (wμ̅s−

∑wμ̅s
128

)
2

s

128
, where μ̅s and σs

2 are the school-specific means and variances 

and w is Add Health’s school weight. The school-specific means (μs) and variances (σs
2) are calculated 

using Add Health’s inschool weights. The variance in the SES score equals VW = 1.35 on average within 

schools. In contrast, the variance in the average SES score between schools equals VB = 0.25.  

 

SES disparities by race 

In the Add Health schools, the race-SES correlation between schools is 𝜌𝐵 = 0.24. Within schools, in 

contrast, it is only 𝜌𝑊 = 0.11. To calculate the race-SES correlation within and between schools, I fit a 

linear model using Add Health’s grand sample weight that regresses students’ SES background on schools’ 

racial distributions (fully interacted proportions). The adjusted R2 = 0.059. Subsequently, I add students’ 

race to the model. The adjusted 𝑅2 increases by 0.012. The race-SES correlations reported on p.8 are the 

square root of these figures. Note that these correlations provide an intuition for the race-SES correlation 

within and between schools. Technically, they are conditional correlations between fitted and observed SES 

scores. 

In the Add Health schools, SES disparities are greater within racial groups than between them. To show 

this, I decompose the variance in the continuous SES score by racial group into within- and between-group 

components. In a given school, the variance within racial groups equals VW(s) =
1

5
∑ σis

2
i  and the variance 

between racial groups equals VB(s) =
1

5
∑ (μis − μ̅s)

2
i , where μjs and σis

2  are the race-specific means and 

variances in school 𝑠 (calculated using Add Health’s inschool weight). I then average the within- and 

between-group components across schools using Add Health’s school weights. On average across schools, 

the variance in the SES score within racial groups equals VW = 0.97. In contrast, the variance in the average 

SES score between racial groups equals VB = 0.27.  
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SES disparities by GPA 

Using the same calculations as above, the GPA-SES correlation between schools is 𝜌𝐵 = 0.19. Within 

schools, it is 𝜌𝑊 = 0.18. Therefore, between schools, the GPA-SES correlation is lower than the race-SES 

correlation, but within schools, the GPA-SES correlation is greater than the race-SES correlation.  

 

SES disparities by neighborhoods 

Using the same variance decomposition as for race, I find that, in the Add Health schools, SES 

disparities are greater between neighborhoods than within them. On average across schools, the variance in 

the SES score within neighborhoods equals VW = 0.56. In contrast, the variance in the average SES score 

between neighborhoods equals VB = 0.84. Neighborhoods may thus contribute to socioeconomic 

segregation. However, their specific impact on socioeconomic segregation cannot be determined from these 

variances alone as it depends, among other things, on the distribution of students across neighborhoods and 

the effect of residential proximity on friendship formation. 

 

SES disparities by course selections 

Using the same variance decomposition as for race, I find that, in the Add Health schools, SES 

disparities are greater between courses than within them. On average across schools, the variance in the 

SES score within courses equals VW = 0.64. In contrast, the variance in the average SES score between 

courses equals VB = 0.72. Courses may thus contribute to socioeconomic segregation. However, their 

specific impact on socioeconomic segregation cannot be determined from these variances alone as it 

depends, among other things, on the distribution of students across courses and the course effect on 

friendship formation. 

 

SES disparities by extracurricular participation 

Using the same variance decomposition as for race, I find that, in the Add Health schools, SES 

disparities are greater within extracurricular activities than between them. On average across schools, the 

variance in the SES score within extracurricular activities equals VW = 0.93. In contrast, the variance in 

the average SES score between extracurricular activities equals VB = 0.38. Extracurricular activities may 

thus attenuate socioeconomic segregation. However, their specific impact on socioeconomic segregation 

cannot be determined from these variances alone as it depends, among other things, on the distribution of 

students across extracurricular activities and the effect of extracurricular activities on friendship formation. 
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C3 ERGM specifications (M3) 

Here I provide more details on the specification of models 1-3. Table C2 details the specific ERGM 

terms I used to build the model. As can be seen from the table, M3 is relatively complex. Substantial 

performance improvements since version 4 of the R package “ergm” make it possible to fit such models on 

larger networks in reasonable time (Krivitsky et al. 2022). The joint estimation also improves model 

convergence and predictive performance (Stewart et al. 2019; Tolochko and Boomgaarden 2024). As a 

robustness check, I estimated the same models using the multilevel model proposed by Krivitsky et al. 

(2023), which produces very similar results. I decided against this approach because the R package 

“ergm.multi” is slower during simulation and does not allow me to specify the desired constraint 

combination. 

To parse the relative impact of the modeled mechanisms, I turn on the estimated conditional effects one 

by one (in silico experiments). I start by turning on the effects of stratified settings to examine how 

neighborhoods, courses, and extracurricular activities contribute to socioeconomic segregation in the 

absence of homophilous tendencies, popularity differences, and relational mechanisms. Subsequently, I 

switch on homophilous tendencies to analyze how homophily on the basis of GPA, race, and SES 

background within these settings contribute to socioeconomic segregation. Then, I turn on popularity 

differences by GPA, race, and SES background to examine the extent to which segregation is the result of 

an unequal rejection of outgroup members rather than an equal one (i.e., homophily). Finally, I switch on 

relational mechanisms to observe how they amplify the existing socioeconomic segregation. While I chose 

this order carefully, I show in Appendix C5 that the impact of each mechanism on socioeconomic 

segregation does not depend much on the ordering.  

To further clarify the approach, I discuss in the following the impact of race homophily, SES 

homophily, and popularity differences by SES background. I model the differential effect of race homophily 

on friendship formation using the main diagonal of the racial mixing matrix (i.e., θ̂White→White, θ̂Black→Black, 

θ̂Asian→Asian, θ̂Hispanic→Hispanic)
26. Like in any other multi-variable regression model, these are conditional 

effects that represent the effect of racial homophily on friendship formation net of other modeled 

mechanisms. This effects on friendship formation then turns into an impact on socioeconomic segregation, 

𝜏̂race, through the (unconditional) correlation between students’ race and SES background. In other words, 

 
26 For categorical statistics, I chose the modal category as baseline. Note that this choice does not affect the results 

very much. To see this, consider the impact of racial homophily on socioeconomic segregation. The impact is 

calculated by comparing the segregation in synthetic networks in which the effect of racial homophily is turned on to 

synthetic networks in which it is turned off. By choosing ties among white students as baseline, in networks in which 

racial homophily is turned off, all ties have the same friendship propensity as ties among whites. The choice of baseline 

does not affect 𝜏̂θk because the impact of racial homophily on segregation arises from differences in tie propensity 

across racial combinations and these differences do not change depending on which baseline category is chosen. 
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the impact of racial homophily on socioeconomic segregation arises from the structural intersectionality 

between these attributes. Through interaction effects, I also consider behavioral intersectionalities between 

race and SES background. 

I model the differential effect of SES homophily on friendship formation using the main diagonal of 

the socioeconomic mixing matrix (i.e., θ̂low→low, θ̂med→med, θ̂high→high). The impact of SES homophily on 

socioeconomic segregation, 𝜏̂SES, should be understood as a residual effect that captures the remaining 

unobserved drivers of socioeconomic segregation net of other modeled mechanisms27.  

Finally, I model the differential effect of popularity differences by SES background on friendship 

formation using the off-diagonal elements of the socioeconomic mixing matrix (i.e., θ̂low→med, 

θ̂low→high,θ̂med→low, et cetera). This operationalization builds and improves upon prior work that separates 

homophily and popularity mechanisms using mixing matrices (An 2022; An and McConnell 2015). The 

separation of homophily and popularity in this prior work is incomplete because outdegree differences are 

not taken out. In addition to group-specific homophily, the incidences in mixing matrices also reflect group 

differences in- and outdegree. Homophily and popularity effects will thus be confounded by differences in 

sociality without removing outdegree differences. I take them out by holding constant the outdegree 

distribution during estimation and simulation, which allows for a more precise separation of these two 

mechanisms.  

 
27 Including the socioeconomic mixing matrix in the model does not affect the results or pose estimation issues 

because M3 is a model of friendship formation, not of socioeconomic segregation. The model is thus not saturated. I 

simply include socioeconomic mixing matrix to be able to turn on and off its effects when simulating networks. 
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Table C2: ERGM statistics of models 1-3. 

ERGM statistics Explanation 

Random selection between and within schools (M1) 

formula = g ~ edges 

constraints = ~ odegrees 

Random selection between and within schools. 

Students in simulated networks have the same 

outdegree as in the observed networks. 

Random selection within schools (M2) 

formula = g ~ edges +  

offset(F(~edges, ~!nodematch(“schoolid”))) 

constraints = ~ odegrees 

Random selection within schools. Students in 

simulated networks have the same outdegree as in the 

observed networks. 

Full model (M3) 

formula = g ~ edges +  

offset(F(~edges, ~!nodematch(“schoolid”))) + 

constraints = ~ odegrees 

Students in simulated networks have the same 

outdegree as in the observed networks. 

+ Stratified settings 

edgecov(x) + edgecov(x2) + edgecov(x3) + 

 

x = course overlap, extracurricular overlap, residential 

proximity 

Course overlap, extracurricular activity overlap, and 

residential proximity 

+ Homophily and Popularity differences 

nodemix(SES, levels2=mm_SES) + 

nodemix(GPA, levels2=mm_GPA) + 

nodemix(race, levels2=mm_race) + 

nodematch(“race_sub”) + 

 

mm_SES = matrix(c(“11”, “12”, “13”, “21”, NA, “23”, 

“31”, “32”, “33”), 3, 3) 

 

mm_GPA and mm_race are constructed analogously 

 

also included (using F() operator): 

− Intersectional homophily: same_SES * same_race, 

same_SES * race, same_race * SES 

− Intersectional popularity: race * SES 

Homophily and popularity on the basis of SES, GPA, 

as well as race and subracial categories. 

 

SES: Homophilous and aspirational tendencies are 

separated using the diagonal statistics as homophily 

(11, NA, 33) and the off-diagonal terms as aspiration 

(12, 13, 21, 23, 31, 32). The baseline is homophily 

among medium-SES students (22). 

 

Analogous separations are performed for GPA and 

race. 

 

I include several interactions to measure potential 

behavioral peculiarities at the intersection of race and 

SES background. 

+ Relational mechanisms 

mutual 

F(~mutual, ~nodemix(SES, mm_xses) + 

F(~mutual, ~nodemix(SES, mm_gpa) + 

F(~mutual, ~nodemix(SES, mm_xrace) + 

Reciprocity 

I also include differential reciprocity to estimate 

whether the tendency to reciprocate ties depends on 

whether they cross group boundaries. 

 

gwesp(0, fixed=T) + gwdsp(0, fixed=T), 

F(~gwesp(0, fixed=T), ~nodemix(SES, mm_xses) + 

F(~gwesp(0, fixed=T), ~nodemix(SES, mm_gpa) + 

F(~gwesp(0, fixed=T), ~nodemix(SES, mm_xrace) + 

Triadic closure  

− I include “gwdsp” to estimate “gwesp” more 

accurately as some of the transitive triangles 

may in fact be created by open two paths. 

− I also include differential triadic closure to 

estimate whether the tendency to close open 

triads depends on whether the open edge 

crosses group boundaries. 
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ERGM statistics Explanation 

gwidegree(0, fixed=T)  Preferential attachment  

I include preferential attachment to estimate the effect 

of the other modeled mechanisms more accurately. I 

leave it out of the paper because its impact on 

segregation is negligible and readers find the 

difference between preferential attachment and 

popularity differences by student attributes hard to 

comprehend. 

A negative coefficient indicates preferential 

attachment (i.e., ties are more likely to be directed 

toward a few subjects) (Hunter 2007). 

absdiff(grade) + absdiff(age) + nodematch(gender) I include these statistics to improve model-fit. They 

do not affect the results as they are uncorrelated with 

SES background. 

 

C4 ERGM regression results (M3) 

This section provides the regression output for M3. Table C3 presents the same results as in Figure 5: the 

average marginal effect of each variable (Duxbury and Wertsching 2023). Table C4 presents the normal 

ERGM regression output: the effect of each mechanism on the conditional log-odds of a tie. 

 

Table C3: Average marginal effects (AME). The table provides the AME of each variable, measuring the 

average change in tie probability as a variable increases by one unit. AMEs are on a probability scale, 

which allows for effect size comparisons. Effects should be interpreted relative to the baseline tie 

probability, which is 0.01% on average across networks. **** p<0.0001, *** p<0.001, ** p<0.01, * 

p<0.05, + p<0.01.  

Interpretation example: The popularity of high-SES students increases the baseline tie probability of ties 

to them by 0.1 percentage points (from 0.01% to 0.02%). 

Variable Beta SE P 

Stratified settings 

(Overlap courses)^1 1.3857 0.01509 *** 

(Overlap courses)^2 -0.75137 0.014005 *** 

(Overlap courses)^3 0.12304 0.003593 *** 

(Overlap extras)^1 0.16764 0.028651 *** 

(Overlap extras)^2 0.071723 0.055016  

(Overlap extras)^3 -0.05136 0.025036 * 

(Residential proximity)^1 -0.21934 0.015068 *** 

(Residential proximity)^2 0.12401 0.017061 *** 

(Residential proximity)^3 -0.021468 0.004617 *** 

Homophily and popularity 

Popularity: low-GPA -0.01288 0.008048  

Popularity: med-GPA 0.023038 0.009489 * 

Popularity: high-GPA -0.01519 0.007588 * 

Homophily: low-GPA 0.055254 0.010134 *** 

Homophily: med-GPA reference 

Homophily: high-GPA 0.052023 0.009897 *** 

Popularity: low-SES 0.018778 0.036628  

Popularity: med-SES 0.04936 0.036275  
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Popularity: high-SES 0.10029 0.036909 ** 

Homophily: low-SES 0.006558 0.010736  

Homophily: med-SES reference 

Homophily: high-SES 0.022362 0.010123 * 

Popularity: White 0.013734 0.022035  

Popularity: Black -0.06361 0.022489 ** 

Popularity: Asian -0.05906 0.023969 * 

Popularity: Hispanic 0.013015 0.020746  

Homophily: White reference 

Homophily: Black 0.22148 0.016283 *** 

Homophily: Asian 0.32663 0.016254 *** 

Homophily: Hispanic 0.22304 0.016648 *** 

Homophily: subracial match 0.15067 0.008417 *** 

Homophily: grade level -0.02912 0.003152 *** 

Homophily: age -0.03465 0.002836 *** 

Homophily: gender 0.067425 0.003268 *** 

Popularity: White x low-SES  -0.00553 0.028734  

Popularity: Black x low-SES  -0.02511 0.033872  

Popularity: Asian x low-SES 0.011678 0.041551  

Popularity: Hispanic x low-SES -0.00297 0.02259  

Popularity: White x high-SES  -0.01875 0.028306  

Popularity: Black x high-SES  -0.07022 0.029448 * 

Popularity: Asian x high-SES -0.04548 0.027831  

Popularity: Hispanic x high-SES -0.03454 0.028777  

Homophily: White x same-SES 0.008101 0.019942  

Homophily: Black x same-SES 0.002659 0.02082  

Homophily: Asian x same-SES 0.008189 0.021591  

Homophily: Hispanic x same-SES 0.058642 0.02064 ** 

Homophily: low-SES x same-race -0.00333 0.013234  

Homophily: med-SES x same-race -0.0205 0.012498  

Homophily: high-SES x same-race -0.06265 0.013353 *** 

Homophily: same-SES x same-race 0.012609 0.018276  

Relational mechanisms 

Reciprocity (mutual) 0.5294 0.013975 *** 

Reciprocity x cross-SES 0.002851 0.014419 *** 

Reciprocity x cross-GPA 0.029358 0.013753  

Reciprocity x cross-race 0.15214 0.018799 * 

Triadic closure (gwesp) 0.29171 0.004279 *** 

Triadic closure x cross-SES 0.009359 0.004572 * 

Triadic closure x cross-GPA 0.016467 0.004549 *** 

Triadic closure x cross-race 0.008171 0.011608  

Open two paths (gwdsp) -0.02694 0.000903 *** 

Preferential attachment (gwideg) -0.19168 0.010006 *** 
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Table C4: ERGM results. The table provides the regular ERGM output: the effect of each variable on the 

conditional log-odds of a tie. **** p<0.0001, *** p<0.001, ** p<0.01, * p<0.05, + p<0.01.  

Variable Beta SE P 

Stratified settings 

(Overlap courses)^1 6.230888 0.067856 *** 

(Overlap courses)^2 -3.37867 0.062978 *** 

(Overlap courses)^3 0.553254 0.016156 *** 

(Overlap extras)^1 0.753829 0.128835 *** 

(Overlap extras)^2 0.322515 0.24739  

(Overlap extras)^3 -0.23094 0.112578 * 

(Residential proximity)^1 0.986308 0.067757 *** 

(Residential proximity)^2 -0.557618 0.076716 *** 

(Residential proximity)^3 0.096534 0.020762 *** 

Homophily and popularity 

Popularity: low-GPA -0.057925 0.036189  

Popularity: med-GPA 0.103593 0.042669 * 

Popularity: high-GPA -0.068299 0.034119 * 

Homophily: low-GPA 0.248461 0.04557 *** 

Homophily: med-GPA reference  

Homophily: high-GPA 0.233932 0.044503 *** 

Popularity: low-SES 0.08444 0.164704  

Popularity: med-SES 0.221958 0.163116  

Popularity: high-SES 0.450987 0.16597 ** 

Homophily: low-SES 0.029487 0.048277  

Homophily: med-SES reference 

Homophily: high-SES 0.100555 0.04552 * 

Popularity: White 0.061757 0.099083  

Popularity: Black -0.265553 0.107783 ** 

Popularity: Asian -0.286051 0.101125 * 

Popularity: Hispanic 0.058525 0.093287  

Homophily: White reference 

Homophily: Black 1.468739 0.07309 *** 

Homophily: Asian 0.995916 0.073218 *** 

Homophily: Hispanic 1.002955 0.074862 *** 

Homophily: subracial match 0.677521 0.037848 *** 

Homophily: grade level -0.130959 0.014173 *** 

Homophily: age -0.155812 0.012754 *** 

Homophily: gender 0.303191 0.014697 *** 

Popularity: White x low-SES  -0.024851 0.129207  

Popularity: Black x low-SES  -0.112927 0.152313  

Popularity: Asian x low-SES 0.052512 0.186842  

Popularity: Hispanic x low-SES -0.013361 0.101582  

Popularity: White x high-SES  -0.084301 0.127282  

Popularity: Black x high-SES  -0.315761 0.132419 * 

Popularity: Asian x high-SES -0.204514 0.125147  

Popularity: Hispanic x high-SES -0.155301 0.129401  

Homophily: White x same-SES 0.036429 0.089672  

Homophily: Black x same-SES 0.011954 0.093622  

Homophily: Asian x same-SES 0.036825 0.097089  

Homophily: Hispanic x same-SES 0.263695 0.092812 ** 

Homophily: low-SES x same-race -0.014967 0.059511  

Homophily: med-SES x same-race -0.092179 0.056198  

Homophily: high-SES x same-race -0.281701 0.060045 *** 

Homophily: same-SES x same-race 0.0567 0.082181  
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Relational mechanisms 

Reciprocity (mutual) 2.380564 0.062841 *** 

Reciprocity x cross-SES 0.012821 0.06484 *** 

Reciprocity x cross-GPA 0.132014 0.061841  

Reciprocity x cross-race 0.684125 0.084531 * 

Triadic closure (gwesp) 1.311728 0.019243 *** 

Triadic closure x cross-SES 0.042083 0.020557 * 

Triadic closure x cross-GPA 0.074047 0.020455 *** 

Triadic closure x cross-race 0.036744 0.052197  

Open two paths (gwdsp) -0.121156 0.004061 *** 

Preferential attachment (gwideg) -0.861941 0.044993 *** 

 

C5 Robustness checks: sequence of effects (M3) 

This sections demonstrates that the results presented in Figure 7 are not artifacts of the sequence in 

which mechanisms are added. In Figure 7, I first turn on the effects of stratified settings to examine how 

neighborhoods, courses, and extracurricular activities contribute to socioeconomic segregation absent 

friending biases. Subsequently, I switch on homophilous tendencies to analyze how homophily on the basis 

of GPA, race, and SES background within these settings contribute to socioeconomic segregation. Then, I 

turn on popularity differences by GPA, race, and SES background to examine the extent to which 

segregation is the result of an unequal rejection of outgroup members rather than an equal one (i.e., 

homophily). Finally, I switch on relational mechanisms to examine if they amplify the existing 

socioeconomic segregation.  

Figure C1 shows that the impact of mechanisms does not depend much on the ordering. In the figure, I 

exemplarily switched the ordering of race and SES for homophilous tendencies and popularity differences. 

While the proportions are not identical to Figure 7 (partly because I only simulate 100,000 networks), the 

overall picture is the same. Both racial and socioeconomic homophily contribute to socioeconomic 

segregation while popularity differences by race barely affect it and popularity differences by SES reduce 

socioeconomic segregation. The reason why the ordering does not matter much is that I switch on 

conditional effects estimated in a single model rather than unconditional effects estimated in a sequence of 

models. An exception is relational mechanisms; their impact on socioeconomic segregation depends on the 

existing segregation in the network, which is why I add them last.  

An alternative approach to measuring relative contributions would be to switch off mechanisms while 

keeping all other mechanisms switched on. A disadvantage of this approach is that contributions do not 

sum up (i.e., ∑τθk ≠ π̂t
M3,full − π̂t

M3,empty
) and are much smaller because relational mechanisms amplify all 

but the absent mechanism and because mechanisms compensate for each other due to intercorrelations. This 

can be seen in Figure C2, where the impact of a mechanism was measured by switching it off while keeping 

all other mechanisms switched on. The overall picture is again very similar, but effect sizes are much lower. 
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Figure C1: As compared to Figure 7, the sequence of race and SES for homophilous tendencies and 

popularity differences was switched during simulation. 

 

 

Figure C2: As compared to Figure 7, the impact of each mechanism was measured by switching it off while 

keeping all other mechanisms switched on. 

 

  



 

 

183 

 

C6 Convergence statistics and goodness-of-fit statistics (M3) 

The MCMC diagnostics suggest that the chains successfully converged to the posterior distributions. 

Figure C3 depicts what I call “monetplots”, a combination of density and trace plot, depicting the density 

of the MCMC sample statistics and the trace that lead to it. For the most part, the monetplots indicate that 

the 10 specified chains are mixing well since densities are bell-shaped and centered around zero. The 

reciprocity and triadic closure parameters show trace plots with some patterns. To investigate, I fitted a 

simpler model without interactions between reciprocity and cross-group ties as well triadic closure and 

cross-group ties. Without these interactions the patterns disappear. Therefore, the interactions introduce 

some estimation uncertainty in the model.  

Apart from reciprocity and triadic closure, MCMC chains show little serial correlation between sample 

statistics at different points in the chain, which suggests that they are independent draws. Similarly, the 

overall Geweke burn-in diagnostic is nonsignificant, indicating that the means at different locations of the 

chains are equal. 

Figure C4 presents goodness-of-fit diagnostics. The plots show that the model recapitulates well the 

observed in- and outdegree distribution, edge-wise shared partners, and geodesic distances. The plot on the 

top left depicts the models’ observed sufficient statistics as quantiles of the simulated sample. The observed 

statistics are near the sample median, indicating that the model recapitulates observed structures to a 

satisfactory degree. 
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Figure C3: “Monetplots”: a combination of density and trace plot, depicting the density of the MCMC 

sample statistics and the trace that lead to it. 
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Figure C4: Goodness-of-fit diagnostics. 

 

  



 

 

187 

 

REFERENCES 

An, Weihua. 2022. ‘Friendship Network Formation in Chinese Middle Schools: Patterns of Inequality and 

Homophily’. Social Networks 68:218–28. doi: 10.1016/J.SOCNET.2021.07.003. 

An, Weihua, and Will R. McConnell. 2015. ‘The Origins of Asymmetric Ties in Friendship Networks: From 

Status Differential to Self-Perceived Centrality’. Network Science 3(2):269–92. doi: 10.1017/NWS.2015.12. 

Barber, Carolyn, and Jillian Woodford Wasson. 2014. ‘A Comparison of Adolescents’ Friendship Networks by 

Advanced Coursework Participation Status’. Gifted Child Quarterly 59(1):23–37. doi: 

10.1177/0016986214559639. 

van Buuren, Stef, and Karin Groothuis-Oudshoorn. 2011. ‘Mice: Multivariate Imputation by Chained Equations 

in R’. Journal of Statistical Software 45(3):1–67. doi: 10.18637/JSS.V045.I03. 

Chabot, Timothée. 2024. ‘How Does Socioeconomic Homophily Emerge? Testing for the Contribution of 

Different Processes to Socioeconomic Segregation in Adolescent Friendships’. Social Networks 76:160–73. 

doi: 10.1016/J.SOCNET.2023.09.002. 

Chantala, K. 2001. National Longitudinal Study of Adolescent Health: Constructing Weights to Use in Analyzing 

Pairs of Individuals from Add Health Data. 

Chetty, Raj, Matthew O. Jackson, Theresa Kuchler, Johannes Stroebel, Nathaniel Hendren, Robert B. Fluegge, 

Sara Gong, Federico Gonzalez, Armelle Grondin, Matthew Jacob, Drew Johnston, Martin Koenen, Eduardo 

Laguna-Muggenburg, Florian Mudekereza, Tom Rutter, Nicolaj Thor, Wilbur Townsend, Ruby Zhang, Mike 

Bailey, Pablo Barberá, Monica Bhole, and Nils Wernerfelt. 2022. ‘Social Capital II: Determinants of 

Economic Connectedness’. Nature 2022 608:7921 608(7921):122–34. doi: 10.1038/s41586-022-04997-3. 

Duxbury, Scott W., and Jenna Wertsching. 2023. ‘Scaling Bias in Pooled Exponential Random Graph Models’. 

Social Networks 74:19–30. doi: 10.1016/J.SOCNET.2023.02.003. 

Frank, Kenneth A., Chandra Muller, Kathryn S. Schiller, Catherine Riegle-Crumb, Anna Strassmann Mueller, 

Robert Crosnoe, and Jennifer Pearson. 2008. ‘The Social Dynamics of Mathematics Coursetaking in High 

School’. American Journal of Sociology 113(6):1645–96. doi: 10.1086/587153. 

Goldthorpe, John H., Catriona. Llewellyn, and Clive. Payne. 1980. Social Mobility and Class Structure in 

Modern Britain. Clarendon Press. 

Goodreau, Steven M., James A. Kitts, and Martina Morris. 2009. ‘Birds of a Feather, Or Friend of a Friend?: 

Using Exponential Random Graph Models to Investigate Adolescent Social Networks’. Demography 

46(1):103–25. doi: 10.1353/dem.0.0045. 

Hoffman, Marion, and Timothée Chabot. 2023. ‘The Role of Selection in Socioeconomic Homophily: Evidence 

from an Adolescent Summer Camp’. Social Networks 74:259–74. doi: 10.1016/J.SOCNET.2023.04.002. 

Hunter, David R. 2007. ‘Curved Exponential Family Models for Social Networks’. Social Networks 29(2):216–

30. doi: 10.1016/J.SOCNET.2006.08.005. 

Krause, Robert W., Mark Huisman, Christian Steglich, and Tom Snijders. 2020. ‘Missing Data in Cross-

Sectional Networks – An Extensive Comparison of Missing Data Treatment Methods’. Social Networks 

62:99–112. doi: 10.1016/J.SOCNET.2020.02.004. 

Krivitsky, Pavel N., Pietro Coletti, Niel Hens, and South Wales. 2023. ‘A Tale of Two Datasets: 

Representativeness and Generalisability of Inference for Samples of Networks’. Journal of the American 

Statistical Association 1–22. doi: 10.1080/01621459.2023.2242627. 

Krivitsky, Pavel N., David R. Hunter, Martina Morris, and Chad Klumb. 2022. ‘Ergm 4: Computational 

Improvements’. ArXiv 2203.08198, ArXiv.Org E-Print Archive. 



 

 

188 

 

Madley-Dowd, Paul, Rachael Hughes, Kate Tilling, and Jon Heron. 2019. ‘The Proportion of Missing Data 

Should Not Be Used to Guide Decisions on Multiple Imputation’. Journal of Clinical Epidemiology 110:63–

73. doi: 10.1016/J.JCLINEPI.2019.02.016. 

Malacarne, Timothy. 2017. ‘Rich Friends, Poor Friends: Inter–Socioeconomic Status Friendships in Secondary 

School’. Socius: Sociological Research for a Dynamic World 3:237802311773699. doi: 

10.1177/2378023117736994. 

Mouw, Ted, and Barbara Entwisle. 2006. ‘Residential Segregation and Interracial Friendship in Schools’. 

American Journal of Sociology 112(2):394–441. doi: 10.1086/506415. 

NCES. 1998a. Overview of Public Elementary and Secondary Schools and Districts: School Year 1995-96, Table 

6. 

NCES. 1998b. Private School Universe Survey, 1995-96, Table 15. 

Smith, Jeffrey A., Jonathan H. Morgan, and James Moody. 2022. ‘Network Sampling Coverage III: Imputation 

of Missing Network Data under Different Network and Missing Data Conditions’. Social Networks 68:148–

78. doi: 10.1016/J.SOCNET.2021.05.002. 

Stewart, Jonathan, Michael Schweinberger, Michal Bojanowski, and Martina Morris. 2019. ‘Multilevel Network 

Data Facilitate Statistical Inference for Curved ERGMs with Geometrically Weighted Terms’. Social 

Networks 59:98–119. doi: 10.1016/J.SOCNET.2018.11.003. 

Tolochko, Petro, and Hajo G. Boomgaarden. 2024. ‘Same but Different: A Comparison of Estimation 

Approaches for Exponential Random Graph Models for Multiple Networks’. Social Networks 76:1–11. doi: 

10.1016/J.SOCNET.2023.05.003. 

Zwier, Dieuwke, and Sara Geven. 2023. ‘Knowing Me, Knowing You: Socio-Economic Status and (Segregation 

in) Peer and Parental Networks in Primary School’. Social Networks 74:127–38. doi: 

10.1016/J.SOCNET.2023.03.003. 

 


	Biographical sketch
	Acknowledgements
	Table of Contents
	Introduction
	Micro-macro models to examine individual variation
	Chapter 1: Treatment effects on within-group and between-group inequality. An explanatory decomposition approach.
	Chapter 2: “A multilevel model for coalition governments: Uncovering dependencies within and between governments due to parties.”

	Micro-macro models to examine mutual interdependence
	Chapter 3: “Socioeconomic segregation in adolescent friendship networks: A network analysis of social closure in US high schools.”

	REFERENCES

	Chapter 1 Treatment effects on within-group and between-group inequality  An EXPLANATORY decomposition approach
	Abstract
	Introduction
	Methods to study inequality
	Explanatory variance decomposition
	Descriptive variance decomposition
	Decomposing the effect of treatment on inequality
	Decomposing the change in the effect of treatment on inequality over time
	Estimating the effect of treatment on the group-specific means and variances

	Variance-based inequality measures
	Pigou-Dalton principle of transfers
	Additive decomposability
	Scale independence

	Empirical example: The changing impact of motherhood on earnings inequality
	Data and measurements
	Application 1: Descriptive decomposition of women’s earnings inequality
	Application 2: Explanatory decomposition of the motherhood effect

	Conclusion and Discussion
	REFERENCES

	Chapter 2 A multilevel model for coalition governments: Uncovering dependencies within and between governments  due to parties
	Abstract
	Introduction
	The multilevel structure of coalition government data
	Modeling the multilevel structure
	The government-level effect
	The country-level effect
	The party-level effect

	Endogenizing the weight function to model interdependencies
	Two examples from government survival

	Estimation
	Model performance
	Relationship to Albarello (2024)
	Application: Parties’ financial dependency on their members and The interdependence structure of government survival
	Theoretical considerations
	Data and Measurement
	Model specification
	Results
	The origin of variance in government survival
	The effect of financial dependency
	The interdependence structure of government survival


	Conclusions
	REFERENCES

	Chapter 3 Socioeconomic segregation in adolescent friendship networks:  A network analysis of social closure in US high schools.
	Abstract
	Introduction
	Determinants of socioeconomic segregation  in high school friendship networks
	Socioeconomic segregation between schools
	Socioeconomic segregation within schools: Stratified settings
	Socioeconomic segregation within schools: Homophilous tendencies
	Socioeconomic segregation within schools: Popularity differences
	Socioeconomic segregation within schools: Relational mechanisms

	Data and Methods
	Data
	Measurement
	Methodological approach
	Analysis 1: Dividing socioeconomic segregation in friendship networks into within- and between-school components
	Analysis 2: Parsing the determinants of socioeconomic segregation within schools


	Results
	Degree and patterns of socioeconomic segregation in high school friendship networks
	Determinants: Compositional differences between schools
	Determinants: Stratified settings, homophilous tendencies, popularity differences, and relational mechanisms within schools
	Exclusion of low-SES students
	Socioeconomic segregation overall


	Limitations
	Discussion and Conclusion
	Degree and patterns of socioeconomic segregation

	Notes
	REFERENCES

	Conclusion
	Supplementary Material Chapter 1
	Appendix 1: R library “ineqx”
	Appendix 2: Derivations
	A2.1 Equation 2
	A2.2 Equation 5
	A2.3 Equation 8
	A2.4 Decomposition of the change in post-treatment variance induced by the change in the effect of treatment on the variance

	Appendix 3: Applications
	Application 1
	Application 2

	Appendix 4: Replication of Wodtke (2016)
	REFERENCES

	Supplementary Material Chapter 2
	Appendix A1: Advantages of using Bayesian estimation to fit multilevel models
	Appendix A2: rmm package
	Appendix A3: Simulation study
	Simulation setup
	Results: Party-level clustering
	Results: Interdependencies in the aggregation process

	Appendix A4: Empirical application
	Theory
	Data
	Measurement
	Model estimation

	Appendix A5: Extensions
	Party random effects as a random walk
	A social network perspective on government survival
	The impact of opposition parties on government survival

	References

	Supplementary Material Chapter 3
	A Data
	A1 Operationalization of all employed variables
	A2 Missing values and imputation
	A3 Descriptive statistics
	A4 Survey weights for dyadic data

	B Description of socioeconomic segregation  in high school friendship networks
	C Analysis of determinants of socioeconomic segregation
	C1 Review of prior work
	C2 SES disparities by third variables
	C3 ERGM specifications (M3)
	C5 Robustness checks: sequence of effects (M3)
	C6 Convergence statistics and goodness-of-fit statistics (M3)

	References


